Cargando…

Magnetoelectric MEMS Magnetic Field Sensor Based on a Laminated Heterostructure of Bidomain Lithium Niobate and Metglas

Non-contact mapping of magnetic fields produced by the human heart muscle requires the application of arrays of miniature and highly sensitive magnetic field sensors. In this article, we describe a MEMS technology of laminated magnetoelectric heterostructures comprising a thin piezoelectric lithium...

Descripción completa

Detalles Bibliográficos
Autores principales: Turutin, Andrei V., Skryleva, Elena A., Kubasov, Ilya V., Milovich, Filipp O., Temirov, Alexander A., Raketov, Kirill V., Kislyuk, Aleksandr M., Zhukov, Roman N., Senatulin, Boris R., Kuts, Victor V., Malinkovich, Mikhail D., Parkhomenko, Yuriy N., Sobolev, Nikolai A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861317/
https://www.ncbi.nlm.nih.gov/pubmed/36676218
http://dx.doi.org/10.3390/ma16020484
_version_ 1784874811182284800
author Turutin, Andrei V.
Skryleva, Elena A.
Kubasov, Ilya V.
Milovich, Filipp O.
Temirov, Alexander A.
Raketov, Kirill V.
Kislyuk, Aleksandr M.
Zhukov, Roman N.
Senatulin, Boris R.
Kuts, Victor V.
Malinkovich, Mikhail D.
Parkhomenko, Yuriy N.
Sobolev, Nikolai A.
author_facet Turutin, Andrei V.
Skryleva, Elena A.
Kubasov, Ilya V.
Milovich, Filipp O.
Temirov, Alexander A.
Raketov, Kirill V.
Kislyuk, Aleksandr M.
Zhukov, Roman N.
Senatulin, Boris R.
Kuts, Victor V.
Malinkovich, Mikhail D.
Parkhomenko, Yuriy N.
Sobolev, Nikolai A.
author_sort Turutin, Andrei V.
collection PubMed
description Non-contact mapping of magnetic fields produced by the human heart muscle requires the application of arrays of miniature and highly sensitive magnetic field sensors. In this article, we describe a MEMS technology of laminated magnetoelectric heterostructures comprising a thin piezoelectric lithium niobate single crystal and a film of magnetostrictive metglas. In the former, a ferroelectric bidomain structure is created using a technique developed by the authors. A cantilever is formed by microblasting inside the lithium niobate crystal. Metglas layers are deposited by magnetron sputtering. The quality of the metglas layers was assessed by XPS depth profiling and TEM. Detailed measurements of the magnetoelectric effect in the quasistatic and dynamic modes were performed. The magnetoelectric coefficient |α(32)| reaches a value of 492 V/(cm·Oe) at bending resonance. The quality factor of the structure was Q = 520. The average phase amounted to 93.4° ± 2.7° for the magnetic field amplitude ranging from 12 to 100 pT. An AC magnetic field detection limit of 12 pT at a resonance frequency of 3065 Hz was achieved which exceeds by a factor of 5 the best value for magnetoelectric MEMS lead-free composites reported in the literature. The noise level of the magnetoelectric signal was 0.47 µV/Hz(1/2). Ways to improve the sensitivity of the developed sensors to the magnetic field for biomedical applications are indicated.
format Online
Article
Text
id pubmed-9861317
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98613172023-01-22 Magnetoelectric MEMS Magnetic Field Sensor Based on a Laminated Heterostructure of Bidomain Lithium Niobate and Metglas Turutin, Andrei V. Skryleva, Elena A. Kubasov, Ilya V. Milovich, Filipp O. Temirov, Alexander A. Raketov, Kirill V. Kislyuk, Aleksandr M. Zhukov, Roman N. Senatulin, Boris R. Kuts, Victor V. Malinkovich, Mikhail D. Parkhomenko, Yuriy N. Sobolev, Nikolai A. Materials (Basel) Article Non-contact mapping of magnetic fields produced by the human heart muscle requires the application of arrays of miniature and highly sensitive magnetic field sensors. In this article, we describe a MEMS technology of laminated magnetoelectric heterostructures comprising a thin piezoelectric lithium niobate single crystal and a film of magnetostrictive metglas. In the former, a ferroelectric bidomain structure is created using a technique developed by the authors. A cantilever is formed by microblasting inside the lithium niobate crystal. Metglas layers are deposited by magnetron sputtering. The quality of the metglas layers was assessed by XPS depth profiling and TEM. Detailed measurements of the magnetoelectric effect in the quasistatic and dynamic modes were performed. The magnetoelectric coefficient |α(32)| reaches a value of 492 V/(cm·Oe) at bending resonance. The quality factor of the structure was Q = 520. The average phase amounted to 93.4° ± 2.7° for the magnetic field amplitude ranging from 12 to 100 pT. An AC magnetic field detection limit of 12 pT at a resonance frequency of 3065 Hz was achieved which exceeds by a factor of 5 the best value for magnetoelectric MEMS lead-free composites reported in the literature. The noise level of the magnetoelectric signal was 0.47 µV/Hz(1/2). Ways to improve the sensitivity of the developed sensors to the magnetic field for biomedical applications are indicated. MDPI 2023-01-04 /pmc/articles/PMC9861317/ /pubmed/36676218 http://dx.doi.org/10.3390/ma16020484 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Turutin, Andrei V.
Skryleva, Elena A.
Kubasov, Ilya V.
Milovich, Filipp O.
Temirov, Alexander A.
Raketov, Kirill V.
Kislyuk, Aleksandr M.
Zhukov, Roman N.
Senatulin, Boris R.
Kuts, Victor V.
Malinkovich, Mikhail D.
Parkhomenko, Yuriy N.
Sobolev, Nikolai A.
Magnetoelectric MEMS Magnetic Field Sensor Based on a Laminated Heterostructure of Bidomain Lithium Niobate and Metglas
title Magnetoelectric MEMS Magnetic Field Sensor Based on a Laminated Heterostructure of Bidomain Lithium Niobate and Metglas
title_full Magnetoelectric MEMS Magnetic Field Sensor Based on a Laminated Heterostructure of Bidomain Lithium Niobate and Metglas
title_fullStr Magnetoelectric MEMS Magnetic Field Sensor Based on a Laminated Heterostructure of Bidomain Lithium Niobate and Metglas
title_full_unstemmed Magnetoelectric MEMS Magnetic Field Sensor Based on a Laminated Heterostructure of Bidomain Lithium Niobate and Metglas
title_short Magnetoelectric MEMS Magnetic Field Sensor Based on a Laminated Heterostructure of Bidomain Lithium Niobate and Metglas
title_sort magnetoelectric mems magnetic field sensor based on a laminated heterostructure of bidomain lithium niobate and metglas
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861317/
https://www.ncbi.nlm.nih.gov/pubmed/36676218
http://dx.doi.org/10.3390/ma16020484
work_keys_str_mv AT turutinandreiv magnetoelectricmemsmagneticfieldsensorbasedonalaminatedheterostructureofbidomainlithiumniobateandmetglas
AT skrylevaelenaa magnetoelectricmemsmagneticfieldsensorbasedonalaminatedheterostructureofbidomainlithiumniobateandmetglas
AT kubasovilyav magnetoelectricmemsmagneticfieldsensorbasedonalaminatedheterostructureofbidomainlithiumniobateandmetglas
AT milovichfilippo magnetoelectricmemsmagneticfieldsensorbasedonalaminatedheterostructureofbidomainlithiumniobateandmetglas
AT temirovalexandera magnetoelectricmemsmagneticfieldsensorbasedonalaminatedheterostructureofbidomainlithiumniobateandmetglas
AT raketovkirillv magnetoelectricmemsmagneticfieldsensorbasedonalaminatedheterostructureofbidomainlithiumniobateandmetglas
AT kislyukaleksandrm magnetoelectricmemsmagneticfieldsensorbasedonalaminatedheterostructureofbidomainlithiumniobateandmetglas
AT zhukovromann magnetoelectricmemsmagneticfieldsensorbasedonalaminatedheterostructureofbidomainlithiumniobateandmetglas
AT senatulinborisr magnetoelectricmemsmagneticfieldsensorbasedonalaminatedheterostructureofbidomainlithiumniobateandmetglas
AT kutsvictorv magnetoelectricmemsmagneticfieldsensorbasedonalaminatedheterostructureofbidomainlithiumniobateandmetglas
AT malinkovichmikhaild magnetoelectricmemsmagneticfieldsensorbasedonalaminatedheterostructureofbidomainlithiumniobateandmetglas
AT parkhomenkoyuriyn magnetoelectricmemsmagneticfieldsensorbasedonalaminatedheterostructureofbidomainlithiumniobateandmetglas
AT sobolevnikolaia magnetoelectricmemsmagneticfieldsensorbasedonalaminatedheterostructureofbidomainlithiumniobateandmetglas