Cargando…
Heterogeneous Development of β-Cell Populations in Diabetes-Resistant and -Susceptible Mice
Progressive dysfunction and failure of insulin-releasing β-cells are a hallmark of type 2 diabetes (T2D). To study mechanisms of β-cell loss in T2D, we performed islet single-cell RNA sequencing of two obese mouse strains differing in their diabetes susceptibility. With mice on a control diet, we id...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862397/ https://www.ncbi.nlm.nih.gov/pubmed/35771990 http://dx.doi.org/10.2337/db21-1030 |
Sumario: | Progressive dysfunction and failure of insulin-releasing β-cells are a hallmark of type 2 diabetes (T2D). To study mechanisms of β-cell loss in T2D, we performed islet single-cell RNA sequencing of two obese mouse strains differing in their diabetes susceptibility. With mice on a control diet, we identified six β-cell clusters with similar abundance in both strains. However, after feeding of a diabetogenic diet for 2 days, β-cell cluster composition markedly differed between strains. Islets of diabetes-resistant mice developed into a protective β-cell cluster (Beta4), whereas those of diabetes-prone mice progressed toward stress-related clusters with a strikingly different expression pattern. Interestingly, the protective cluster showed indications of reduced β-cell identity, such as downregulation of GLUT2, GLP1R, and MafA, and in vitro knockdown of GLUT2 in β-cells—mimicking its phenotype—decreased stress response and apoptosis. This might explain enhanced β-cell survival of diabetes-resistant islets. In contrast, β-cells of diabetes-prone mice responded with expression changes indicating metabolic pressure and endoplasmic reticulum stress, presumably leading to later β-cell loss. In conclusion, failure of diabetes-prone mice to adapt gene expression toward a more dedifferentiated state in response to rising blood glucose levels leads to β-cell failure and diabetes development. |
---|