Cargando…

C3-Symmetric Ligands in Drug Design: When the Target Controls the Aesthetics of the Drug

A number of proteins are able to adopt a homotrimeric spatial conformation. Among these structures, this feature appears as crucial for biologic targets, since it facilitates the design of C3-symmetric ligands that are especially suitable for displaying optimized ligand–target interactions and thera...

Descripción completa

Detalles Bibliográficos
Autores principales: Antonijevic, Mirjana, Rochais, Christophe, Dallemagne, Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862528/
https://www.ncbi.nlm.nih.gov/pubmed/36677739
http://dx.doi.org/10.3390/molecules28020679
Descripción
Sumario:A number of proteins are able to adopt a homotrimeric spatial conformation. Among these structures, this feature appears as crucial for biologic targets, since it facilitates the design of C3-symmetric ligands that are especially suitable for displaying optimized ligand–target interactions and therapeutic benefits. Additionally, DNA as a therapeutic target, even if its conformation into a superhelix does not correspond to a C3-symmetry, can also take advantage of these C3-symmetric ligands for better interactions and therapeutic effects. For the moment, this opportunity appears to be under-exploited, but should become more frequent with the discovery of new homotrimeric targets such as the SARS-CoV2 spike protein. Besides their potential therapeutic interest, the synthetic access to these C3-symmetric ligands often leads to chemical challenges, although drug candidates with an aesthetic structure are generally obtained.