Cargando…

The Functional and Physicochemical Properties of Rice Protein Concentrate Subjected to Acetylation

The aim of the present study was to increase the value of rice protein concentrate (RPC) by improving the functional properties of a preparation subjected to acetylation and analyze the impact of this chemical modification on chemical composition, digestibility, and protein patterning using SDS-PAGE...

Descripción completa

Detalles Bibliográficos
Autores principales: Miedzianka, Joanna, Walkowiak, Katarzyna, Zielińska-Dawidziak, Magdalena, Zambrowicz, Aleksandra, Wolny, Szymon, Kita, Agnieszka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864533/
https://www.ncbi.nlm.nih.gov/pubmed/36677829
http://dx.doi.org/10.3390/molecules28020770
Descripción
Sumario:The aim of the present study was to increase the value of rice protein concentrate (RPC) by improving the functional properties of a preparation subjected to acetylation and analyze the impact of this chemical modification on chemical composition, digestibility, and protein patterning using SDS-PAGE electrophoresis and FT-IR spectroscopy. In the modified samples, the protein content increased (80.90–83.10 g/100 g cf. 74.20 g/100 g in the control). Electrophoresis revealed that the content of the main rice protein fractions (prolamin and glutelin) decreased as the concentration of the modifying reagent increased. Through spectroscopic analysis, wavenumbers, corresponding to the presence of proteins or lipids, aromatic systems, and carbohydrates, were observed. The use of acetic anhydride did not change the digestibility of the modified RPC significantly when compared to that of the control sample. The acetylation of the RPC caused a significant increase in its emulsifying properties at pH 8 (1.83–14.74%) and its water-binding capacity but did not have a statistically significant impact on the oil-absorption capacity. There was a slight increase in protein solubility and a decrease in foaming capacity in the modified RPC.