Cargando…
Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance
Melanoma, a highly heterogeneous tumor, is comprised of a functionally diverse spectrum of cell phenotypes and subpopulations, including stromal cells in the tumor microenvironment (TME). Melanoma has been shown to dynamically shift between different transcriptional states or phenotypes. This is ref...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864717/ https://www.ncbi.nlm.nih.gov/pubmed/36675114 http://dx.doi.org/10.3390/ijms24021601 |
_version_ | 1784875653102829568 |
---|---|
author | Hossain, Sultana Mehbuba Eccles, Michael R. |
author_facet | Hossain, Sultana Mehbuba Eccles, Michael R. |
author_sort | Hossain, Sultana Mehbuba |
collection | PubMed |
description | Melanoma, a highly heterogeneous tumor, is comprised of a functionally diverse spectrum of cell phenotypes and subpopulations, including stromal cells in the tumor microenvironment (TME). Melanoma has been shown to dynamically shift between different transcriptional states or phenotypes. This is referred to as phenotype switching in melanoma, and it involves switching between quiescent and proliferative cell cycle states, and dramatic shifts in invasiveness, as well as changes in signaling pathways in the melanoma cells, and immune cell composition in the TME. Melanoma cell plasticity is associated with altered gene expression in immune cells and cancer-associated fibroblasts, as well as changes in extracellular matrix, which drive the metastatic cascade and therapeutic resistance. Therefore, resistance to therapy in melanoma is not only dependent on genetic evolution, but it has also been suggested to be driven by gene expression changes and adaptive phenotypic cell plasticity. This review discusses recent findings in melanoma phenotype switching, immunotherapy resistance, and the balancing of the homeostatic TME between the different melanoma cell subpopulations. We also discuss future perspectives of the biology of neural crest-like state(s) in melanoma. |
format | Online Article Text |
id | pubmed-9864717 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98647172023-01-22 Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance Hossain, Sultana Mehbuba Eccles, Michael R. Int J Mol Sci Review Melanoma, a highly heterogeneous tumor, is comprised of a functionally diverse spectrum of cell phenotypes and subpopulations, including stromal cells in the tumor microenvironment (TME). Melanoma has been shown to dynamically shift between different transcriptional states or phenotypes. This is referred to as phenotype switching in melanoma, and it involves switching between quiescent and proliferative cell cycle states, and dramatic shifts in invasiveness, as well as changes in signaling pathways in the melanoma cells, and immune cell composition in the TME. Melanoma cell plasticity is associated with altered gene expression in immune cells and cancer-associated fibroblasts, as well as changes in extracellular matrix, which drive the metastatic cascade and therapeutic resistance. Therefore, resistance to therapy in melanoma is not only dependent on genetic evolution, but it has also been suggested to be driven by gene expression changes and adaptive phenotypic cell plasticity. This review discusses recent findings in melanoma phenotype switching, immunotherapy resistance, and the balancing of the homeostatic TME between the different melanoma cell subpopulations. We also discuss future perspectives of the biology of neural crest-like state(s) in melanoma. MDPI 2023-01-13 /pmc/articles/PMC9864717/ /pubmed/36675114 http://dx.doi.org/10.3390/ijms24021601 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Hossain, Sultana Mehbuba Eccles, Michael R. Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance |
title | Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance |
title_full | Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance |
title_fullStr | Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance |
title_full_unstemmed | Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance |
title_short | Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance |
title_sort | phenotype switching and the melanoma microenvironment; impact on immunotherapy and drug resistance |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864717/ https://www.ncbi.nlm.nih.gov/pubmed/36675114 http://dx.doi.org/10.3390/ijms24021601 |
work_keys_str_mv | AT hossainsultanamehbuba phenotypeswitchingandthemelanomamicroenvironmentimpactonimmunotherapyanddrugresistance AT ecclesmichaelr phenotypeswitchingandthemelanomamicroenvironmentimpactonimmunotherapyanddrugresistance |