Cargando…

Microdosing Sprint Distribution as an Alternative to Achieve Better Sprint Performance in Field Hockey Players

Introduction: The implementation of optimal sprint training volume is a relevant component of team sport performance. This study aimed to compare the efficiency and effectiveness of two different configurations of within-season training load distribution on sprint performance over 6 weeks. Methods:...

Descripción completa

Detalles Bibliográficos
Autores principales: Cuadrado-Peñafiel, Víctor, Castaño-Zambudio, Adrián, Martínez-Aranda, Luis Manuel, González-Hernández, Jorge Miguel, Martín-Acero, Rafael, Jiménez-Reyes, Pedro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865125/
https://www.ncbi.nlm.nih.gov/pubmed/36679451
http://dx.doi.org/10.3390/s23020650
Descripción
Sumario:Introduction: The implementation of optimal sprint training volume is a relevant component of team sport performance. This study aimed to compare the efficiency and effectiveness of two different configurations of within-season training load distribution on sprint performance over 6 weeks. Methods: Twenty male professional FH players participated in the study. Players were conveniently assigned to two groups: the experimental group (MG; n = 11; applying the microdosing training methodology) and the control group (TG; n = 9; traditional training, with players being selected by the national team). Sprint performance was evaluated through 20 m sprint time (T20) m and horizontal force–velocity profile (HFVP) tests before (Pre) and after (Post) intervention. Both measurements were separated by a period of 6 weeks. The specific sprint training program was performed for each group (for vs. two weekly sessions for MG and TG, respectively) attempting to influence the full spectrum of the F-V relationship. Results: Conditional demands analysis (matches and training sessions) showed no significant differences between the groups during the intervention period (p > 0.05). No significant between-group differences were found at Pre or Post for any sprint-related performance (p > 0.05). Nevertheless, intra-group analysis revealed significant differences in F0, Pmax, RFmean at 10 m and every achieved time for distances ranging from 5 to 25 m for MG (p < 0.05). Such changes in mechanical capabilities and sprint performance were characterized by an increase in stride length and a decrease in stride frequency during the maximal velocity phase (p < 0.05). Conclusion: Implementing strategies such as microdosed training load distribution appears to be an effective and efficient alternative for sprint training in team sports such as hockey.