Cargando…
Comparative Study of Cooperative Platoon Merging Control Based on Reinforcement Learning
The time that a vehicle merges in a lane reduction can significantly affect passengers’ safety, comfort, and energy consumption, which can, in turn, affect the global adoption of autonomous electric vehicles. In this regard, this paper analyzes how connected and automated vehicles should cooperative...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865798/ https://www.ncbi.nlm.nih.gov/pubmed/36679787 http://dx.doi.org/10.3390/s23020990 |
_version_ | 1784875928564793344 |
---|---|
author | Irshayyid, Ali Chen, Jun |
author_facet | Irshayyid, Ali Chen, Jun |
author_sort | Irshayyid, Ali |
collection | PubMed |
description | The time that a vehicle merges in a lane reduction can significantly affect passengers’ safety, comfort, and energy consumption, which can, in turn, affect the global adoption of autonomous electric vehicles. In this regard, this paper analyzes how connected and automated vehicles should cooperatively drive to reduce energy consumption and improve traffic flow. Specifically, a model-free deep reinforcement learning approach is used to find the optimal driving behavior in the scenario in which two platoons are merging into one. Several metrics are analyzed, including the time of the merge, energy consumption, and jerk, etc. Numerical simulation results show that the proposed framework can reduce the energy consumed by up to 76.7%, and the average jerk can be decreased by up to 50%, all by only changing the cooperative merge behavior. The present findings are essential since reducing the jerk can decrease the longitudinal acceleration oscillations, enhance comfort and drivability, and improve the general acceptance of autonomous vehicle platooning as a new technology. |
format | Online Article Text |
id | pubmed-9865798 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98657982023-01-22 Comparative Study of Cooperative Platoon Merging Control Based on Reinforcement Learning Irshayyid, Ali Chen, Jun Sensors (Basel) Article The time that a vehicle merges in a lane reduction can significantly affect passengers’ safety, comfort, and energy consumption, which can, in turn, affect the global adoption of autonomous electric vehicles. In this regard, this paper analyzes how connected and automated vehicles should cooperatively drive to reduce energy consumption and improve traffic flow. Specifically, a model-free deep reinforcement learning approach is used to find the optimal driving behavior in the scenario in which two platoons are merging into one. Several metrics are analyzed, including the time of the merge, energy consumption, and jerk, etc. Numerical simulation results show that the proposed framework can reduce the energy consumed by up to 76.7%, and the average jerk can be decreased by up to 50%, all by only changing the cooperative merge behavior. The present findings are essential since reducing the jerk can decrease the longitudinal acceleration oscillations, enhance comfort and drivability, and improve the general acceptance of autonomous vehicle platooning as a new technology. MDPI 2023-01-15 /pmc/articles/PMC9865798/ /pubmed/36679787 http://dx.doi.org/10.3390/s23020990 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Irshayyid, Ali Chen, Jun Comparative Study of Cooperative Platoon Merging Control Based on Reinforcement Learning |
title | Comparative Study of Cooperative Platoon Merging Control Based on Reinforcement Learning |
title_full | Comparative Study of Cooperative Platoon Merging Control Based on Reinforcement Learning |
title_fullStr | Comparative Study of Cooperative Platoon Merging Control Based on Reinforcement Learning |
title_full_unstemmed | Comparative Study of Cooperative Platoon Merging Control Based on Reinforcement Learning |
title_short | Comparative Study of Cooperative Platoon Merging Control Based on Reinforcement Learning |
title_sort | comparative study of cooperative platoon merging control based on reinforcement learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865798/ https://www.ncbi.nlm.nih.gov/pubmed/36679787 http://dx.doi.org/10.3390/s23020990 |
work_keys_str_mv | AT irshayyidali comparativestudyofcooperativeplatoonmergingcontrolbasedonreinforcementlearning AT chenjun comparativestudyofcooperativeplatoonmergingcontrolbasedonreinforcementlearning |