Cargando…

Highly Polymorphic Materials and Dissolution Behaviour: The Peculiar Case of Rifaximin

Rifaximin is a locally acting antibiotic practically insoluble in water. It presents several crystal phases characterized by different degrees of hydration. The aim of this work is to investigate the dissolution behaviour of rifaximin α, β, and amorphous forms in relation to their relative thermodyn...

Descripción completa

Detalles Bibliográficos
Autores principales: Bianchera, Annalisa, Nebuloni, Marino, Colombo, Nicola, Pirola, Davide, Bettini, Ruggero
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865978/
https://www.ncbi.nlm.nih.gov/pubmed/36678682
http://dx.doi.org/10.3390/pharmaceutics15010053
Descripción
Sumario:Rifaximin is a locally acting antibiotic practically insoluble in water. It presents several crystal phases characterized by different degrees of hydration. The aim of this work is to investigate the dissolution behaviour of rifaximin α, β, and amorphous forms in relation to their relative thermodynamic stability to contribute to clarifying possible solvent- or humidity-mediated conversion patterns. Kinetic and intrinsic solubility were investigated along with particle size distribution, specific surface area, and external morphology. The solution and moisture mediated conversion from metastable α and amorphous forms to stable β form were elucidated by coupling intrinsic dissolution test with chemometric analysis as well as by dynamic vapour sorption measurements. The dissolution behaviour of the α form stems mainly from the transition to β form that occurs upon exposition to relative humidity higher than 40%. The α form converted more rapidly than the amorphous form due to the smaller supersaturation ratio. It can be concluded that, due to its marked tendency to transform into β form, the dissolution test for the α form, even if conducted according to compendial procedures, needs to be accompanied by a panel of further tests that allow to uniquely identify the solid phase under investigation.