Cargando…
Correspondence analysis for dimension reduction, batch integration, and visualization of single-cell RNA-seq data
Effective dimension reduction is essential for single cell RNA-seq (scRNAseq) analysis. Principal component analysis (PCA) is widely used, but requires continuous, normally-distributed data; therefore, it is often coupled with log-transformation in scRNAseq applications, which can distort the data a...
Autores principales: | Hsu, Lauren L., Culhane, Aedín C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867729/ https://www.ncbi.nlm.nih.gov/pubmed/36681709 http://dx.doi.org/10.1038/s41598-022-26434-1 |
Ejemplares similares
-
Dimension reduction techniques for the integrative analysis of multi-omics data
por: Meng, Chen, et al.
Publicado: (2016) -
Impact of Data Preprocessing on Integrative Matrix Factorization of Single Cell Data
por: Hsu, Lauren L., et al.
Publicado: (2020) -
VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder
por: Wang, Dongfang, et al.
Publicado: (2018) -
CellMixS: quantifying and visualizing batch effects in single-cell RNA-seq data
por: Lütge, Almut, et al.
Publicado: (2021) -
Integrating single-cell RNA-seq datasets with substantial batch effects
por: Hrovatin, Karin, et al.
Publicado: (2023)