Cargando…
Few-shot deep learning for AFM force curve characterization of single-molecule interactions
Deep learning (DL)-based analytics has the scope to transform the field of atomic force microscopy (AFM) with regard to fast and bias-free measurement characterization. For example, AFM force-distance curves can help estimate important parameters of binding kinetics, such as the most probable ruptur...
Autores principales: | Waite, Joshua R., Tan, Sin Yong, Saha, Homagni, Sarkar, Soumik, Sarkar, Anwesha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868661/ https://www.ncbi.nlm.nih.gov/pubmed/36699737 http://dx.doi.org/10.1016/j.patter.2022.100672 |
Ejemplares similares
-
Deep Learning for Live Cell Shape Detection and Automated AFM Navigation
por: Rade, Jaydeep, et al.
Publicado: (2022) -
A Modular Vision Language Navigation and Manipulation Framework for Long Horizon Compositional Tasks in Indoor Environment
por: Saha, Homagni, et al.
Publicado: (2022) -
Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves
por: Efremov, Yuri M., et al.
Publicado: (2017) -
An explicit model to extract viscoelastic properties of cells from AFM force-indentation curves
por: Abuhattum, Shada, et al.
Publicado: (2022) -
FewJoint: few-shot learning for joint dialogue understanding
por: Hou, Yutai, et al.
Publicado: (2022)