Cargando…
mSigHdp: hierarchical Dirichlet process mixture modeling for mutational signature discovery
Mutational signatures are characteristic patterns of mutations caused by endogenous or exogenous mutational processes. These signatures can be discovered by analyzing mutations in large sets of samples—usually somatic mutations in tumor samples. Most programs for discovering mutational signatures ar...
Autores principales: | Liu, Mo, Wu, Yang, Jiang, Nanhai, Boot, Arnoud, Rozen, Steven G |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869330/ https://www.ncbi.nlm.nih.gov/pubmed/36694663 http://dx.doi.org/10.1093/nargab/lqad005 |
Ejemplares similares
-
A mixture model for signature discovery from sparse mutation data
por: Sason, Itay, et al.
Publicado: (2021) -
Dirichlet process mixture models for single-cell RNA-seq clustering
por: Adossa, Nigatu A., et al.
Publicado: (2022) -
BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin
por: Kshirsagar, Meghana, et al.
Publicado: (2022) -
3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process
por: Djekidel, Mohamed Nadhir, et al.
Publicado: (2015) -
Dynamic classification of fetal heart rates by hierarchical Dirichlet process mixture models
por: Yu, Kezi, et al.
Publicado: (2017)