Cargando…

Boronic Acid Transition State Inhibitors as Potent Inactivators of KPC and CTX-M β-Lactamases: Biochemical and Structural Analyses

Design of novel β-lactamase inhibitors (BLIs) is one of the currently accepted strategies to combat the threat of cephalosporin and carbapenem resistance in Gram-negative bacteria. Boronic acid transition state inhibitors (BATSIs) are competitive, reversible BLIs that offer promise as novel therapeu...

Descripción completa

Detalles Bibliográficos
Autores principales: Alsenani, Tahani A., Rodríguez, María Margarita, Ghiglione, Barbara, Taracila, Magdalena A., Mojica, Maria F., Rojas, Laura J., Hujer, Andrea M., Gutkind, Gabriel, Bethel, Christopher R., Rather, Philip N., Introvigne, Maria Luisa, Prati, Fabio, Caselli, Emilia, Power, Pablo, van den Akker, Focco, Bonomo, Robert A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9872677/
https://www.ncbi.nlm.nih.gov/pubmed/36602311
http://dx.doi.org/10.1128/aac.00930-22
_version_ 1784877453339000832
author Alsenani, Tahani A.
Rodríguez, María Margarita
Ghiglione, Barbara
Taracila, Magdalena A.
Mojica, Maria F.
Rojas, Laura J.
Hujer, Andrea M.
Gutkind, Gabriel
Bethel, Christopher R.
Rather, Philip N.
Introvigne, Maria Luisa
Prati, Fabio
Caselli, Emilia
Power, Pablo
van den Akker, Focco
Bonomo, Robert A.
author_facet Alsenani, Tahani A.
Rodríguez, María Margarita
Ghiglione, Barbara
Taracila, Magdalena A.
Mojica, Maria F.
Rojas, Laura J.
Hujer, Andrea M.
Gutkind, Gabriel
Bethel, Christopher R.
Rather, Philip N.
Introvigne, Maria Luisa
Prati, Fabio
Caselli, Emilia
Power, Pablo
van den Akker, Focco
Bonomo, Robert A.
author_sort Alsenani, Tahani A.
collection PubMed
description Design of novel β-lactamase inhibitors (BLIs) is one of the currently accepted strategies to combat the threat of cephalosporin and carbapenem resistance in Gram-negative bacteria. Boronic acid transition state inhibitors (BATSIs) are competitive, reversible BLIs that offer promise as novel therapeutic agents. In this study, the activities of two α-amido-β-triazolylethaneboronic acid transition state inhibitors (S02030 and MB_076) targeting representative KPC (KPC-2) and CTX-M (CTX-M-96, a CTX-M-15-type extended-spectrum β-lactamase [ESBL]) β-lactamases were evaluated. The 50% inhibitory concentrations (IC(50)s) for both inhibitors were measured in the nanomolar range (2 to 135 nM). For S02030, the k(2)/K for CTX-M-96 (24,000 M(−1) s(−1)) was twice the reported value for KPC-2 (12,000 M(−1) s(−1)); for MB_076, the k(2)/K values ranged from 1,200 M(−1) s(−1) (KPC-2) to 3,900 M(−1) s(−1) (CTX-M-96). Crystal structures of KPC-2 with MB_076 (1.38-Å resolution) and S02030 and the in silico models of CTX-M-96 with these two BATSIs show that interaction in the CTX-M-96–S02030 and CTX-M-96–MB_076 complexes were overall equivalent to that observed for the crystallographic structure of KPC-2–S02030 and KPC-2–MB_076. The tetrahedral interaction surrounding the boron atom from S02030 and MB_076 creates a favorable hydrogen bonding network with S70, S130, N132, N170, and S237. However, the changes from W105 in KPC-2 to Y105 in CTX-M-96 and the missing residue R220 in CTX-M-96 alter the arrangement of the inhibitors in the active site of CTX-M-96, partially explaining the difference in kinetic parameters. The novel BATSI scaffolds studied here advance our understanding of structure-activity relationships (SARs) and illustrate the importance of new approaches to β-lactamase inhibitor design.
format Online
Article
Text
id pubmed-9872677
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-98726772023-01-25 Boronic Acid Transition State Inhibitors as Potent Inactivators of KPC and CTX-M β-Lactamases: Biochemical and Structural Analyses Alsenani, Tahani A. Rodríguez, María Margarita Ghiglione, Barbara Taracila, Magdalena A. Mojica, Maria F. Rojas, Laura J. Hujer, Andrea M. Gutkind, Gabriel Bethel, Christopher R. Rather, Philip N. Introvigne, Maria Luisa Prati, Fabio Caselli, Emilia Power, Pablo van den Akker, Focco Bonomo, Robert A. Antimicrob Agents Chemother Mechanisms of Resistance Design of novel β-lactamase inhibitors (BLIs) is one of the currently accepted strategies to combat the threat of cephalosporin and carbapenem resistance in Gram-negative bacteria. Boronic acid transition state inhibitors (BATSIs) are competitive, reversible BLIs that offer promise as novel therapeutic agents. In this study, the activities of two α-amido-β-triazolylethaneboronic acid transition state inhibitors (S02030 and MB_076) targeting representative KPC (KPC-2) and CTX-M (CTX-M-96, a CTX-M-15-type extended-spectrum β-lactamase [ESBL]) β-lactamases were evaluated. The 50% inhibitory concentrations (IC(50)s) for both inhibitors were measured in the nanomolar range (2 to 135 nM). For S02030, the k(2)/K for CTX-M-96 (24,000 M(−1) s(−1)) was twice the reported value for KPC-2 (12,000 M(−1) s(−1)); for MB_076, the k(2)/K values ranged from 1,200 M(−1) s(−1) (KPC-2) to 3,900 M(−1) s(−1) (CTX-M-96). Crystal structures of KPC-2 with MB_076 (1.38-Å resolution) and S02030 and the in silico models of CTX-M-96 with these two BATSIs show that interaction in the CTX-M-96–S02030 and CTX-M-96–MB_076 complexes were overall equivalent to that observed for the crystallographic structure of KPC-2–S02030 and KPC-2–MB_076. The tetrahedral interaction surrounding the boron atom from S02030 and MB_076 creates a favorable hydrogen bonding network with S70, S130, N132, N170, and S237. However, the changes from W105 in KPC-2 to Y105 in CTX-M-96 and the missing residue R220 in CTX-M-96 alter the arrangement of the inhibitors in the active site of CTX-M-96, partially explaining the difference in kinetic parameters. The novel BATSI scaffolds studied here advance our understanding of structure-activity relationships (SARs) and illustrate the importance of new approaches to β-lactamase inhibitor design. American Society for Microbiology 2023-01-05 /pmc/articles/PMC9872677/ /pubmed/36602311 http://dx.doi.org/10.1128/aac.00930-22 Text en Copyright © 2023 Alsenani et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Mechanisms of Resistance
Alsenani, Tahani A.
Rodríguez, María Margarita
Ghiglione, Barbara
Taracila, Magdalena A.
Mojica, Maria F.
Rojas, Laura J.
Hujer, Andrea M.
Gutkind, Gabriel
Bethel, Christopher R.
Rather, Philip N.
Introvigne, Maria Luisa
Prati, Fabio
Caselli, Emilia
Power, Pablo
van den Akker, Focco
Bonomo, Robert A.
Boronic Acid Transition State Inhibitors as Potent Inactivators of KPC and CTX-M β-Lactamases: Biochemical and Structural Analyses
title Boronic Acid Transition State Inhibitors as Potent Inactivators of KPC and CTX-M β-Lactamases: Biochemical and Structural Analyses
title_full Boronic Acid Transition State Inhibitors as Potent Inactivators of KPC and CTX-M β-Lactamases: Biochemical and Structural Analyses
title_fullStr Boronic Acid Transition State Inhibitors as Potent Inactivators of KPC and CTX-M β-Lactamases: Biochemical and Structural Analyses
title_full_unstemmed Boronic Acid Transition State Inhibitors as Potent Inactivators of KPC and CTX-M β-Lactamases: Biochemical and Structural Analyses
title_short Boronic Acid Transition State Inhibitors as Potent Inactivators of KPC and CTX-M β-Lactamases: Biochemical and Structural Analyses
title_sort boronic acid transition state inhibitors as potent inactivators of kpc and ctx-m β-lactamases: biochemical and structural analyses
topic Mechanisms of Resistance
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9872677/
https://www.ncbi.nlm.nih.gov/pubmed/36602311
http://dx.doi.org/10.1128/aac.00930-22
work_keys_str_mv AT alsenanitahania boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses
AT rodriguezmariamargarita boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses
AT ghiglionebarbara boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses
AT taracilamagdalenaa boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses
AT mojicamariaf boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses
AT rojaslauraj boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses
AT hujerandream boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses
AT gutkindgabriel boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses
AT bethelchristopherr boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses
AT ratherphilipn boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses
AT introvignemarialuisa boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses
AT pratifabio boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses
AT caselliemilia boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses
AT powerpablo boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses
AT vandenakkerfocco boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses
AT bonomoroberta boronicacidtransitionstateinhibitorsaspotentinactivatorsofkpcandctxmblactamasesbiochemicalandstructuralanalyses