Cargando…
SPNet: Structure preserving network for depth completion
Depth completion aims to predict a dense depth map from a sparse one. Benefiting from the powerful ability of convolutional neural networks, recent depth completion methods have achieved remarkable performance. However, it is still a challenging problem to well preserve accurate depth structures, su...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873174/ https://www.ncbi.nlm.nih.gov/pubmed/36693066 http://dx.doi.org/10.1371/journal.pone.0280886 |