Cargando…
SPNet: Structure preserving network for depth completion
Depth completion aims to predict a dense depth map from a sparse one. Benefiting from the powerful ability of convolutional neural networks, recent depth completion methods have achieved remarkable performance. However, it is still a challenging problem to well preserve accurate depth structures, su...
Autores principales: | Li, Tao, Luo, Songning, Fan, Zhiwei, Zhou, Qunbing, Hu, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873174/ https://www.ncbi.nlm.nih.gov/pubmed/36693066 http://dx.doi.org/10.1371/journal.pone.0280886 |
Ejemplares similares
-
Lightweight Depth Completion Network with Local Similarity-Preserving Knowledge Distillation
por: Jeong, Yongseop, et al.
Publicado: (2022) -
An Adaptive Fusion Algorithm for Depth Completion
por: Chen, Long, et al.
Publicado: (2022) -
Details preserved unsupervised depth estimation by fusing traditional stereo knowledge from laparoscopic images
por: Luo, Huoling, et al.
Publicado: (2019) -
ClueDepth Grasp: Leveraging positional clues of depth for completing depth of transparent objects
por: Hong, Yuanlin, et al.
Publicado: (2022) -
Dietary Tributyrin Administration Improves Intestinal Morphology and Selected Bacterial and Short-Chain Fatty Acid Profiles in Broilers Under an Isocaloric Feeding Regime
por: Hu, Qunbing, et al.
Publicado: (2021)