Cargando…

DDCAL: Evenly Distributing Data into Low Variance Clusters Based on Iterative Feature Scaling

This work studies the problem of clustering one-dimensional data points such that they are evenly distributed over a given number of low variance clusters. One application is the visualization of data on choropleth maps or on business process models, but without over-emphasizing outliers. This enabl...

Descripción completa

Detalles Bibliográficos
Autores principales: Lux, Marian, Rinderle-Ma, Stefanie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873542/
https://www.ncbi.nlm.nih.gov/pubmed/36713890
http://dx.doi.org/10.1007/s00357-022-09428-6