Cargando…
DDCAL: Evenly Distributing Data into Low Variance Clusters Based on Iterative Feature Scaling
This work studies the problem of clustering one-dimensional data points such that they are evenly distributed over a given number of low variance clusters. One application is the visualization of data on choropleth maps or on business process models, but without over-emphasizing outliers. This enabl...
Autores principales: | Lux, Marian, Rinderle-Ma, Stefanie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873542/ https://www.ncbi.nlm.nih.gov/pubmed/36713890 http://dx.doi.org/10.1007/s00357-022-09428-6 |
Ejemplares similares
-
Of beta diversity, variance, evenness, and dissimilarity
por: Ricotta, Carlo
Publicado: (2017) -
Split Bregman iteration for multi-period mean variance portfolio optimization
por: Corsaro, Stefania, et al.
Publicado: (2021) -
Data-driven process discovery and analysis: 5th IFIP WG 2. 6 international symposium, SIMPDA 2015, Vienna, Austria, December 9-11, 2015, revised selected papers
por: Ceravolo, Paolo, et al.
Publicado: (2017) -
iterClust: a statistical framework for iterative clustering analysis
por: Ding, Hongxu, et al.
Publicado: (2018) -
LoGo: Combining Local and Global Techniques for Predictive Business Process Monitoring
por: Böhmer, Kristof, et al.
Publicado: (2020)