Cargando…
Improving the Neural Segmentation of Blurry Serial SEM Images by Blind Deblurring
Serial scanning electron microscopy (sSEM) has recently been developed to reconstruct complex largescale neural connectomes, through learning-based instance segmentation. However, blurry images are inevitable amid prolonged automated data acquisition due to imprecision in autofocusing and autostigma...
Autores principales: | Cheng, Ao, Kang, Kai, Zhu, Zhanpeng, Zhang, Ruobing, Wang, Lirong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879678/ https://www.ncbi.nlm.nih.gov/pubmed/36711194 http://dx.doi.org/10.1155/2023/8936903 |
Ejemplares similares
-
Learning the heterogeneous representation of brain's structure from serial SEM images using a masked autoencoder
por: Cheng, Ao, et al.
Publicado: (2023) -
No-Reference Quality Assessment Method for Blurriness of SEM Micrographs with Multiple Texture
por: Wang, Hui, et al.
Publicado: (2019) -
Noise-Adaptive Non-Blind Image Deblurring
por: Slutsky, Michael
Publicado: (2022) -
Application of Blind Deblurring Reconstruction Technique to SPECT Imaging
por: Li, Heng, et al.
Publicado: (2007) -
Blind Deblurring Reconstruction Technique with Applications in PET Imaging
por: Li, Heng, et al.
Publicado: (2009)