Cargando…
Deep-learning-based precise characterization of microwave transistors using fully-automated regression surrogates
Accurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics a...
Autores principales: | Calik, Nurullah, Güneş, Filiz, Koziel, Slawomir, Pietrenko-Dabrowska, Anna, Belen, Mehmet A., Mahouti, Peyman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879951/ https://www.ncbi.nlm.nih.gov/pubmed/36702862 http://dx.doi.org/10.1038/s41598-023-28639-4 |
Ejemplares similares
-
Optimal design of transmitarray antennas via low-cost surrogate modelling
por: Belen, Mehmet A., et al.
Publicado: (2023) -
Buried object characterization by data-driven surrogates and regression-enabled hyperbolic signature extraction
por: Yurt, Reyhan, et al.
Publicado: (2023) -
Rapid multi-criterial design of microwave components with robustness analysis by means of knowledge-based surrogates
por: Koziel, Slawomir, et al.
Publicado: (2023) -
Globalized simulation-driven miniaturization of microwave circuits by means of dimensionality-reduced constrained surrogates
por: Koziel, Slawomir, et al.
Publicado: (2022) -
Performance-driven surrogate modeling of high-frequency structures
por: Koziel, Slawomir, et al.
Publicado: (2020)