Cargando…
Comprehensive genome-scale metabolic model of the human pathogen Cryptococcus neoformans: A platform for understanding pathogen metabolism and identifying new drug targets
Introduction: The fungal priority pathogen Cryptococcus neoformans causes cryptococcal meningoencephalitis in immunocompromised individuals and leads to hundreds of thousands of deaths per year. The undesirable side effects of existing treatments, the need for long application times to prevent the d...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880062/ https://www.ncbi.nlm.nih.gov/pubmed/36714093 http://dx.doi.org/10.3389/fbinf.2023.1121409 |
_version_ | 1784878831114387456 |
---|---|
author | Tezcan, Enes Fahri Demirtas, Yigit Cakar, Zeynep Petek Ulgen, Kutlu O. |
author_facet | Tezcan, Enes Fahri Demirtas, Yigit Cakar, Zeynep Petek Ulgen, Kutlu O. |
author_sort | Tezcan, Enes Fahri |
collection | PubMed |
description | Introduction: The fungal priority pathogen Cryptococcus neoformans causes cryptococcal meningoencephalitis in immunocompromised individuals and leads to hundreds of thousands of deaths per year. The undesirable side effects of existing treatments, the need for long application times to prevent the disease from recurring, the lack of resources for these treatment methods to spread over all continents necessitate the search for new treatment methods. Methods: Genome-scale models have been shown to be valuable in studying the metabolism of many organisms. Here we present the first genome-scale metabolic model for C. neoformans, iCryptococcus. This comprehensive model consists of 1,270 reactions, 1,143 metabolites, 649 genes, and eight compartments. The model was validated, proving accurate when predicting the capability of utilizing different carbon and nitrogen sources and growth rate in comparison to experimental data. Results and Discussion: The compatibility of the in silico Cryptococcus metabolism under infection conditions was assessed. The steroid and amino acid metabolisms found in the essentiality analyses have the potential to be drug targets for the therapeutic strategies to be developed against Cryptococcus species. iCryptococcus model can be applied to explore new targets for antifungal drugs along with essential gene, metabolite and reaction analyses and provides a promising platform for elucidation of pathogen metabolism. |
format | Online Article Text |
id | pubmed-9880062 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98800622023-01-28 Comprehensive genome-scale metabolic model of the human pathogen Cryptococcus neoformans: A platform for understanding pathogen metabolism and identifying new drug targets Tezcan, Enes Fahri Demirtas, Yigit Cakar, Zeynep Petek Ulgen, Kutlu O. Front Bioinform Bioinformatics Introduction: The fungal priority pathogen Cryptococcus neoformans causes cryptococcal meningoencephalitis in immunocompromised individuals and leads to hundreds of thousands of deaths per year. The undesirable side effects of existing treatments, the need for long application times to prevent the disease from recurring, the lack of resources for these treatment methods to spread over all continents necessitate the search for new treatment methods. Methods: Genome-scale models have been shown to be valuable in studying the metabolism of many organisms. Here we present the first genome-scale metabolic model for C. neoformans, iCryptococcus. This comprehensive model consists of 1,270 reactions, 1,143 metabolites, 649 genes, and eight compartments. The model was validated, proving accurate when predicting the capability of utilizing different carbon and nitrogen sources and growth rate in comparison to experimental data. Results and Discussion: The compatibility of the in silico Cryptococcus metabolism under infection conditions was assessed. The steroid and amino acid metabolisms found in the essentiality analyses have the potential to be drug targets for the therapeutic strategies to be developed against Cryptococcus species. iCryptococcus model can be applied to explore new targets for antifungal drugs along with essential gene, metabolite and reaction analyses and provides a promising platform for elucidation of pathogen metabolism. Frontiers Media S.A. 2023-01-13 /pmc/articles/PMC9880062/ /pubmed/36714093 http://dx.doi.org/10.3389/fbinf.2023.1121409 Text en Copyright © 2023 Tezcan, Demirtas, Cakar and Ulgen. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioinformatics Tezcan, Enes Fahri Demirtas, Yigit Cakar, Zeynep Petek Ulgen, Kutlu O. Comprehensive genome-scale metabolic model of the human pathogen Cryptococcus neoformans: A platform for understanding pathogen metabolism and identifying new drug targets |
title | Comprehensive genome-scale metabolic model of the human pathogen Cryptococcus neoformans: A platform for understanding pathogen metabolism and identifying new drug targets |
title_full | Comprehensive genome-scale metabolic model of the human pathogen Cryptococcus neoformans: A platform for understanding pathogen metabolism and identifying new drug targets |
title_fullStr | Comprehensive genome-scale metabolic model of the human pathogen Cryptococcus neoformans: A platform for understanding pathogen metabolism and identifying new drug targets |
title_full_unstemmed | Comprehensive genome-scale metabolic model of the human pathogen Cryptococcus neoformans: A platform for understanding pathogen metabolism and identifying new drug targets |
title_short | Comprehensive genome-scale metabolic model of the human pathogen Cryptococcus neoformans: A platform for understanding pathogen metabolism and identifying new drug targets |
title_sort | comprehensive genome-scale metabolic model of the human pathogen cryptococcus neoformans: a platform for understanding pathogen metabolism and identifying new drug targets |
topic | Bioinformatics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880062/ https://www.ncbi.nlm.nih.gov/pubmed/36714093 http://dx.doi.org/10.3389/fbinf.2023.1121409 |
work_keys_str_mv | AT tezcanenesfahri comprehensivegenomescalemetabolicmodelofthehumanpathogencryptococcusneoformansaplatformforunderstandingpathogenmetabolismandidentifyingnewdrugtargets AT demirtasyigit comprehensivegenomescalemetabolicmodelofthehumanpathogencryptococcusneoformansaplatformforunderstandingpathogenmetabolismandidentifyingnewdrugtargets AT cakarzeyneppetek comprehensivegenomescalemetabolicmodelofthehumanpathogencryptococcusneoformansaplatformforunderstandingpathogenmetabolismandidentifyingnewdrugtargets AT ulgenkutluo comprehensivegenomescalemetabolicmodelofthehumanpathogencryptococcusneoformansaplatformforunderstandingpathogenmetabolismandidentifyingnewdrugtargets |