Cargando…

Sequential Polyadenylation to Enable Alternative mRNA 3’ End Formation

In eukaryotic cells, a key RNA processing step to generate mature mRNA is the coupled reaction for cleavage and polyadenylation (CPA) at the 3′ end of individual transcripts. Many transcripts are alternatively polyadenylated (APA) to produce mRNAs with different 3′ ends that may either alter protein...

Descripción completa

Detalles Bibliográficos
Autores principales: Hao, Yajing, Cai, Ting, Liu, Chang, Zhang, Xuan, Fu, Xiang-Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Molecular and Cellular Biology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880608/
https://www.ncbi.nlm.nih.gov/pubmed/36697238
http://dx.doi.org/10.14348/molcells.2023.2176
Descripción
Sumario:In eukaryotic cells, a key RNA processing step to generate mature mRNA is the coupled reaction for cleavage and polyadenylation (CPA) at the 3′ end of individual transcripts. Many transcripts are alternatively polyadenylated (APA) to produce mRNAs with different 3′ ends that may either alter protein coding sequence (CDS-APA) or create different lengths of 3′UTR (tandem-APA). As the CPA reaction is intimately associated with transcriptional termination, it has been widely assumed that APA is regulated co-transcriptionally. Isoforms terminated at different regions may have distinct RNA stability under different conditions, thus altering the ratio of APA isoforms. Such differential impacts on different isoforms have been considered as post-transcriptional APA, but strictly speaking, this can only be considered “apparent” APA, as the choice is not made during the CPA reaction. Interestingly, a recent study reveals sequential APA as a new mechanism for post-transcriptional APA. This minireview will focus on this new mechanism to provide insights into various documented regulatory paradigms.