Cargando…

Bromodomain-containing Protein 4 Regulates Innate Inflammation in Airway Epithelial Cells via Modulation of Alternative Splicing

Bromodomain-containing Protein 4 (BRD4) is a transcriptional regulator which coordinates gene expression programs controlling cancer biology, inflammation, and fibrosis. In airway viral infection, non-toxic BRD4-specific inhibitors (BRD4i) block the release of pro-inflammatory cytokines and prevent...

Descripción completa

Detalles Bibliográficos
Autores principales: Mann, Morgan, Fu, Yao, Xu, Xiaofang, Roberts, David S., Li, Yi, Zhou, Jia, Ge, Ying, Brasier, Allan R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882210/
https://www.ncbi.nlm.nih.gov/pubmed/36711789
http://dx.doi.org/10.1101/2023.01.17.524257
Descripción
Sumario:Bromodomain-containing Protein 4 (BRD4) is a transcriptional regulator which coordinates gene expression programs controlling cancer biology, inflammation, and fibrosis. In airway viral infection, non-toxic BRD4-specific inhibitors (BRD4i) block the release of pro-inflammatory cytokines and prevent downstream remodeling. Although the chromatin modifying functions of BRD4 in inducible gene expression have been extensively investigated, its roles in post-transcriptional regulation are not as well understood. Based on its interaction with the transcriptional elongation complex and spliceosome, we hypothesize that BRD4 is a functional regulator of mRNA processing. To address this question, we combine data-independent analysis - parallel accumulation-serial fragmentation (diaPASEF) with RNA-sequencing to achieve deep and integrated coverage of the proteomic and transcriptomic landscapes of human small airway epithelial cells exposed to viral challenge and treated with BRD4i. The transcript-level data was further interrogated for alternative splicing analysis, and the resulting data sets were correlated to identify pathways subject to post-transcriptional regulation. We discover that BRD4 regulates alternative splicing of key genes, including Interferon-related Developmental Regulator 1 (IFRD1) and X-Box Binding Protein 1 (XBP1), related to the innate immune response and the unfolded protein response, respectively. These findings extend the transcriptional elongation-facilitating actions of BRD4 in control of post-transcriptional RNA processing in innate signaling.