Cargando…
Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function
MOTIVATION: Millions of protein sequences have been generated by numerous genome and transcriptome sequencing projects. However, experimentally determining the function of the proteins is still a time consuming, low-throughput, and expensive process, leading to a large protein sequence-function gap....
Autores principales: | Boadu, Frimpong, Cao, Hongyuan, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882282/ https://www.ncbi.nlm.nih.gov/pubmed/36711471 http://dx.doi.org/10.1101/2023.01.17.524477 |
Ejemplares similares
-
Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function
por: Boadu, Frimpong, et al.
Publicado: (2023) -
3D-equivariant graph neural networks for protein model quality assessment
por: Chen, Chen, et al.
Publicado: (2023) -
Atomic protein structure refinement using all-atom graph representations and SE(3)-equivariant graph transformer
por: Wu, Tianqi, et al.
Publicado: (2023) -
Equivariant
Graph Neural Networks for Toxicity Prediction
por: Cremer, Julian, et al.
Publicado: (2023) -
Contextual protein and antibody encodings from equivariant graph transformers
por: Mahajan, Sai Pooja, et al.
Publicado: (2023)