Cargando…

Immune-interacting lymphatic endothelial subtype at capillary terminals drives lymphatic malformation

Oncogenic mutations in PIK3CA, encoding p110α-PI3K, are a common cause of venous and lymphatic malformations. Vessel type–specific disease pathogenesis is poorly understood, hampering development of efficient therapies. Here, we reveal a new immune-interacting subtype of Ptx3-positive dermal lymphat...

Descripción completa

Detalles Bibliográficos
Autores principales: Petkova, Milena, Kraft, Marle, Stritt, Simon, Martinez-Corral, Ines, Ortsäter, Henrik, Vanlandewijck, Michael, Jakic, Bojana, Baselga, Eulàlia, Castillo, Sandra D., Graupera, Mariona, Betsholtz, Christer, Mäkinen, Taija
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884640/
https://www.ncbi.nlm.nih.gov/pubmed/36688917
http://dx.doi.org/10.1084/jem.20220741
Descripción
Sumario:Oncogenic mutations in PIK3CA, encoding p110α-PI3K, are a common cause of venous and lymphatic malformations. Vessel type–specific disease pathogenesis is poorly understood, hampering development of efficient therapies. Here, we reveal a new immune-interacting subtype of Ptx3-positive dermal lymphatic capillary endothelial cells (iLECs) that recruit pro-lymphangiogenic macrophages to promote progressive lymphatic overgrowth. Mouse model of Pik3ca(H1047R)-driven vascular malformations showed that proliferation was induced in both venous and lymphatic ECs but sustained selectively in LECs of advanced lesions. Single-cell transcriptomics identified the iLEC population, residing at lymphatic capillary terminals of normal vasculature, that was expanded in Pik3ca(H1047R) mice. Expression of pro-inflammatory genes, including monocyte/macrophage chemokine Ccl2, in Pik3ca(H1047R)-iLECs was associated with recruitment of VEGF-C–producing macrophages. Macrophage depletion, CCL2 blockade, or anti-inflammatory COX-2 inhibition limited Pik3ca(H1047R)-driven lymphangiogenesis. Thus, targeting the paracrine crosstalk involving iLECs and macrophages provides a new therapeutic opportunity for lymphatic malformations. Identification of iLECs further indicates that peripheral lymphatic vessels not only respond to but also actively orchestrate inflammatory processes.