Cargando…
Deep learning predicts the impact of regulatory variants on cell-type-specific enhancers in the brain
MOTIVATION: Previous studies have shown that the heritability of multiple brain-related traits and disorders is highly enriched in transcriptional enhancer regions. However, these regions often contain many individual variants, while only a subset of them are likely to causally contribute to a trait...
Autores principales: | Zheng, An, Shen, Zeyang, Glass, Christopher K, Gymrek, Melissa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887460/ https://www.ncbi.nlm.nih.gov/pubmed/36726730 http://dx.doi.org/10.1093/bioadv/vbad002 |
Ejemplares similares
-
Mechanisms underlying divergent responses of genetically distinct macrophages to IL-4
por: Hoeksema, Marten A., et al.
Publicado: (2021) -
Deep learning predicts DNA methylation regulatory variants in the human brain and elucidates the genetics of psychiatric disorders
por: Zhou, Jiyun, et al.
Publicado: (2022) -
Deep neural networks identify sequence context features predictive of transcription factor binding
por: Zheng, An, et al.
Publicado: (2021) -
Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals
por: Wesolowska-Andersen, Agata, et al.
Publicado: (2020) -
Back to the family: a renewed approach to rare variant studies
por: Zielinski, Dina, et al.
Publicado: (2012)