Cargando…
Geometric analysis enables biological insight from complex non-identifiable models using simple surrogates
An enduring challenge in computational biology is to balance data quality and quantity with model complexity. Tools such as identifiability analysis and information criterion have been developed to harmonise this juxtaposition, yet cannot always resolve the mismatch between available data and the gr...
Autores principales: | Browning, Alexander P., Simpson, Matthew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891533/ https://www.ncbi.nlm.nih.gov/pubmed/36662831 http://dx.doi.org/10.1371/journal.pcbi.1010844 |
Ejemplares similares
-
Use of Mesothelial Cells and Biological Matrices for Tissue Engineering of Simple Epithelium Surrogates
por: Lachaud, Christian Claude, et al.
Publicado: (2015) -
The geometric approach to human stress based on stress-related surrogate measures
por: Kloucek, Petr, et al.
Publicado: (2021) -
Computational anatomy and geometric shape analysis enables analysis of complex craniofacial phenotypes in zebrafish
por: Diamond, Kelly M., et al.
Publicado: (2022) -
Method of determining geometric patient size surrogates using localizer images in CT
por: Burton, Christiane S.
Publicado: (2020) -
Efficient inference and identifiability analysis for differential equation models with random parameters
por: Browning, Alexander P., et al.
Publicado: (2022)