Cargando…

Insulin-regulated serine and lipid metabolism drive peripheral neuropathy

Diabetes represents a spectrum of disease in which metabolic dysfunction damages multiple organ systems including liver, kidneys and peripheral nerves(1,2). Although the onset and progression of these co-morbidities are linked with insulin resistance, hyperglycaemia and dyslipidaemia(3–7), aberrant...

Descripción completa

Detalles Bibliográficos
Autores principales: Handzlik, Michal K., Gengatharan, Jivani M., Frizzi, Katie E., McGregor, Grace H., Martino, Cameron, Rahman, Gibraan, Gonzalez, Antonio, Moreno, Ana M., Green, Courtney R., Guernsey, Lucie S., Lin, Terry, Tseng, Patrick, Ideguchi, Yoichiro, Fallon, Regis J., Chaix, Amandine, Panda, Satchidananda, Mali, Prashant, Wallace, Martina, Knight, Rob, Gantner, Marin L., Calcutt, Nigel A., Metallo, Christian M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891999/
https://www.ncbi.nlm.nih.gov/pubmed/36697822
http://dx.doi.org/10.1038/s41586-022-05637-6
_version_ 1784881255810072576
author Handzlik, Michal K.
Gengatharan, Jivani M.
Frizzi, Katie E.
McGregor, Grace H.
Martino, Cameron
Rahman, Gibraan
Gonzalez, Antonio
Moreno, Ana M.
Green, Courtney R.
Guernsey, Lucie S.
Lin, Terry
Tseng, Patrick
Ideguchi, Yoichiro
Fallon, Regis J.
Chaix, Amandine
Panda, Satchidananda
Mali, Prashant
Wallace, Martina
Knight, Rob
Gantner, Marin L.
Calcutt, Nigel A.
Metallo, Christian M.
author_facet Handzlik, Michal K.
Gengatharan, Jivani M.
Frizzi, Katie E.
McGregor, Grace H.
Martino, Cameron
Rahman, Gibraan
Gonzalez, Antonio
Moreno, Ana M.
Green, Courtney R.
Guernsey, Lucie S.
Lin, Terry
Tseng, Patrick
Ideguchi, Yoichiro
Fallon, Regis J.
Chaix, Amandine
Panda, Satchidananda
Mali, Prashant
Wallace, Martina
Knight, Rob
Gantner, Marin L.
Calcutt, Nigel A.
Metallo, Christian M.
author_sort Handzlik, Michal K.
collection PubMed
description Diabetes represents a spectrum of disease in which metabolic dysfunction damages multiple organ systems including liver, kidneys and peripheral nerves(1,2). Although the onset and progression of these co-morbidities are linked with insulin resistance, hyperglycaemia and dyslipidaemia(3–7), aberrant non-essential amino acid (NEAA) metabolism also contributes to the pathogenesis of diabetes(8–10). Serine and glycine are closely related NEAAs whose levels are consistently reduced in patients with metabolic syndrome(10–14), but the mechanistic drivers and downstream consequences of this metabotype remain unclear. Low systemic serine and glycine are also emerging as a hallmark of macular and peripheral nerve disorders, correlating with impaired visual acuity and peripheral neuropathy(15,16). Here we demonstrate that aberrant serine homeostasis drives serine and glycine deficiencies in diabetic mice, which can be diagnosed with a serine tolerance test that quantifies serine uptake and disposal. Mimicking these metabolic alterations in young mice by dietary serine or glycine restriction together with high fat intake markedly accelerates the onset of small fibre neuropathy while reducing adiposity. Normalization of serine by dietary supplementation and mitigation of dyslipidaemia with myriocin both alleviate neuropathy in diabetic mice, linking serine-associated peripheral neuropathy to sphingolipid metabolism. These findings identify systemic serine deficiency and dyslipidaemia as novel risk factors for peripheral neuropathy that may be exploited therapeutically.
format Online
Article
Text
id pubmed-9891999
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-98919992023-02-03 Insulin-regulated serine and lipid metabolism drive peripheral neuropathy Handzlik, Michal K. Gengatharan, Jivani M. Frizzi, Katie E. McGregor, Grace H. Martino, Cameron Rahman, Gibraan Gonzalez, Antonio Moreno, Ana M. Green, Courtney R. Guernsey, Lucie S. Lin, Terry Tseng, Patrick Ideguchi, Yoichiro Fallon, Regis J. Chaix, Amandine Panda, Satchidananda Mali, Prashant Wallace, Martina Knight, Rob Gantner, Marin L. Calcutt, Nigel A. Metallo, Christian M. Nature Article Diabetes represents a spectrum of disease in which metabolic dysfunction damages multiple organ systems including liver, kidneys and peripheral nerves(1,2). Although the onset and progression of these co-morbidities are linked with insulin resistance, hyperglycaemia and dyslipidaemia(3–7), aberrant non-essential amino acid (NEAA) metabolism also contributes to the pathogenesis of diabetes(8–10). Serine and glycine are closely related NEAAs whose levels are consistently reduced in patients with metabolic syndrome(10–14), but the mechanistic drivers and downstream consequences of this metabotype remain unclear. Low systemic serine and glycine are also emerging as a hallmark of macular and peripheral nerve disorders, correlating with impaired visual acuity and peripheral neuropathy(15,16). Here we demonstrate that aberrant serine homeostasis drives serine and glycine deficiencies in diabetic mice, which can be diagnosed with a serine tolerance test that quantifies serine uptake and disposal. Mimicking these metabolic alterations in young mice by dietary serine or glycine restriction together with high fat intake markedly accelerates the onset of small fibre neuropathy while reducing adiposity. Normalization of serine by dietary supplementation and mitigation of dyslipidaemia with myriocin both alleviate neuropathy in diabetic mice, linking serine-associated peripheral neuropathy to sphingolipid metabolism. These findings identify systemic serine deficiency and dyslipidaemia as novel risk factors for peripheral neuropathy that may be exploited therapeutically. Nature Publishing Group UK 2023-01-25 2023 /pmc/articles/PMC9891999/ /pubmed/36697822 http://dx.doi.org/10.1038/s41586-022-05637-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Handzlik, Michal K.
Gengatharan, Jivani M.
Frizzi, Katie E.
McGregor, Grace H.
Martino, Cameron
Rahman, Gibraan
Gonzalez, Antonio
Moreno, Ana M.
Green, Courtney R.
Guernsey, Lucie S.
Lin, Terry
Tseng, Patrick
Ideguchi, Yoichiro
Fallon, Regis J.
Chaix, Amandine
Panda, Satchidananda
Mali, Prashant
Wallace, Martina
Knight, Rob
Gantner, Marin L.
Calcutt, Nigel A.
Metallo, Christian M.
Insulin-regulated serine and lipid metabolism drive peripheral neuropathy
title Insulin-regulated serine and lipid metabolism drive peripheral neuropathy
title_full Insulin-regulated serine and lipid metabolism drive peripheral neuropathy
title_fullStr Insulin-regulated serine and lipid metabolism drive peripheral neuropathy
title_full_unstemmed Insulin-regulated serine and lipid metabolism drive peripheral neuropathy
title_short Insulin-regulated serine and lipid metabolism drive peripheral neuropathy
title_sort insulin-regulated serine and lipid metabolism drive peripheral neuropathy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891999/
https://www.ncbi.nlm.nih.gov/pubmed/36697822
http://dx.doi.org/10.1038/s41586-022-05637-6
work_keys_str_mv AT handzlikmichalk insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT gengatharanjivanim insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT frizzikatiee insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT mcgregorgraceh insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT martinocameron insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT rahmangibraan insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT gonzalezantonio insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT morenoanam insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT greencourtneyr insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT guernseylucies insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT linterry insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT tsengpatrick insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT ideguchiyoichiro insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT fallonregisj insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT chaixamandine insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT pandasatchidananda insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT maliprashant insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT wallacemartina insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT knightrob insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT gantnermarinl insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT calcuttnigela insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy
AT metallochristianm insulinregulatedserineandlipidmetabolismdriveperipheralneuropathy