Cargando…
Pulse labeling reveals the tail end of protein folding by proteome profiling
Accurate and efficient folding of nascent protein sequences into their native states requires support from the protein homeostasis network. Herein we probe which newly translated proteins are thermo-sensitive, making them susceptible to misfolding and aggregation under heat stress using pulse-SILAC...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893312/ https://www.ncbi.nlm.nih.gov/pubmed/35858568 http://dx.doi.org/10.1016/j.celrep.2022.111096 |
_version_ | 1784881498186317824 |
---|---|
author | Zhu, Mang Kuechler, Erich R. Wong, Ryan W.K. Calabrese, Gaetano Sitarik, Ian M. Rana, Viraj Stoynov, Nikolay O’Brien, Edward P. Gsponer, Jörg Mayor, Thibault |
author_facet | Zhu, Mang Kuechler, Erich R. Wong, Ryan W.K. Calabrese, Gaetano Sitarik, Ian M. Rana, Viraj Stoynov, Nikolay O’Brien, Edward P. Gsponer, Jörg Mayor, Thibault |
author_sort | Zhu, Mang |
collection | PubMed |
description | Accurate and efficient folding of nascent protein sequences into their native states requires support from the protein homeostasis network. Herein we probe which newly translated proteins are thermo-sensitive, making them susceptible to misfolding and aggregation under heat stress using pulse-SILAC mass spectrometry. We find a distinct group of proteins that is highly sensitive to this perturbation when newly synthesized but not once matured. These proteins are abundant and highly structured. Notably, they display a tendency to form β sheet secondary structures, have more complex folding topology, and are enriched for chaperone-binding motifs, suggesting a higher demand for chaperone-assisted folding. These polypeptides are also more often components of stable protein complexes in comparison with other proteins. Combining these findings suggests the existence of a specific subset of proteins in the cell that is particularly vulnerable to misfolding and aggregation following synthesis before reaching the native state. |
format | Online Article Text |
id | pubmed-9893312 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-98933122023-02-02 Pulse labeling reveals the tail end of protein folding by proteome profiling Zhu, Mang Kuechler, Erich R. Wong, Ryan W.K. Calabrese, Gaetano Sitarik, Ian M. Rana, Viraj Stoynov, Nikolay O’Brien, Edward P. Gsponer, Jörg Mayor, Thibault Cell Rep Article Accurate and efficient folding of nascent protein sequences into their native states requires support from the protein homeostasis network. Herein we probe which newly translated proteins are thermo-sensitive, making them susceptible to misfolding and aggregation under heat stress using pulse-SILAC mass spectrometry. We find a distinct group of proteins that is highly sensitive to this perturbation when newly synthesized but not once matured. These proteins are abundant and highly structured. Notably, they display a tendency to form β sheet secondary structures, have more complex folding topology, and are enriched for chaperone-binding motifs, suggesting a higher demand for chaperone-assisted folding. These polypeptides are also more often components of stable protein complexes in comparison with other proteins. Combining these findings suggests the existence of a specific subset of proteins in the cell that is particularly vulnerable to misfolding and aggregation following synthesis before reaching the native state. 2022-07-19 /pmc/articles/PMC9893312/ /pubmed/35858568 http://dx.doi.org/10.1016/j.celrep.2022.111096 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Zhu, Mang Kuechler, Erich R. Wong, Ryan W.K. Calabrese, Gaetano Sitarik, Ian M. Rana, Viraj Stoynov, Nikolay O’Brien, Edward P. Gsponer, Jörg Mayor, Thibault Pulse labeling reveals the tail end of protein folding by proteome profiling |
title | Pulse labeling reveals the tail end of protein folding by proteome profiling |
title_full | Pulse labeling reveals the tail end of protein folding by proteome profiling |
title_fullStr | Pulse labeling reveals the tail end of protein folding by proteome profiling |
title_full_unstemmed | Pulse labeling reveals the tail end of protein folding by proteome profiling |
title_short | Pulse labeling reveals the tail end of protein folding by proteome profiling |
title_sort | pulse labeling reveals the tail end of protein folding by proteome profiling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893312/ https://www.ncbi.nlm.nih.gov/pubmed/35858568 http://dx.doi.org/10.1016/j.celrep.2022.111096 |
work_keys_str_mv | AT zhumang pulselabelingrevealsthetailendofproteinfoldingbyproteomeprofiling AT kuechlererichr pulselabelingrevealsthetailendofproteinfoldingbyproteomeprofiling AT wongryanwk pulselabelingrevealsthetailendofproteinfoldingbyproteomeprofiling AT calabresegaetano pulselabelingrevealsthetailendofproteinfoldingbyproteomeprofiling AT sitarikianm pulselabelingrevealsthetailendofproteinfoldingbyproteomeprofiling AT ranaviraj pulselabelingrevealsthetailendofproteinfoldingbyproteomeprofiling AT stoynovnikolay pulselabelingrevealsthetailendofproteinfoldingbyproteomeprofiling AT obrienedwardp pulselabelingrevealsthetailendofproteinfoldingbyproteomeprofiling AT gsponerjorg pulselabelingrevealsthetailendofproteinfoldingbyproteomeprofiling AT mayorthibault pulselabelingrevealsthetailendofproteinfoldingbyproteomeprofiling |