Cargando…
Safe reinforcement learning under temporal logic with reward design and quantum action selection
This paper proposes an advanced Reinforcement Learning (RL) method, incorporating reward-shaping, safety value functions, and a quantum action selection algorithm. The method is model-free and can synthesize a finite policy that maximizes the probability of satisfying a complex task. Although RL is...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894922/ https://www.ncbi.nlm.nih.gov/pubmed/36732441 http://dx.doi.org/10.1038/s41598-023-28582-4 |