Cargando…
Safe reinforcement learning under temporal logic with reward design and quantum action selection
This paper proposes an advanced Reinforcement Learning (RL) method, incorporating reward-shaping, safety value functions, and a quantum action selection algorithm. The method is model-free and can synthesize a finite policy that maximizes the probability of satisfying a complex task. Although RL is...
Autores principales: | Cai, Mingyu, Xiao, Shaoping, Li, Junchao, Kan, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894922/ https://www.ncbi.nlm.nih.gov/pubmed/36732441 http://dx.doi.org/10.1038/s41598-023-28582-4 |
Ejemplares similares
-
Logical Structures Underlying Quantum Computing
por: Holik, Federico, et al.
Publicado: (2019) -
Compact representations for the design of quantum logic
por: Niemann, Philipp, et al.
Publicado: (2017) -
Balancing Risks and Rewards: The Logic of Violence
por: Broom, Mark
Publicado: (2009) -
Quantum Logic
por: Mittelstaedt, Peter
Publicado: (1978) -
The Role of Mediodorsal Thalamus in Temporal Differentiation of Reward-Guided Actions
por: Yu, Chunxiu, et al.
Publicado: (2010)