Cargando…

Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics

Astronauts experience dramatic loss of muscle mass, decreased strength, and insulin resistance, despite performing daily intense physical exercise that would lead to muscle growth on Earth. Partially mimicking spaceflight, prolonged bed rest causes muscle atrophy, loss of force, and glucose intolera...

Descripción completa

Detalles Bibliográficos
Autores principales: Murgia, Marta, Ciciliot, Stefano, Nagaraj, Nagarjuna, Reggiani, Carlo, Schiaffino, Stefano, Franchi, Martino V, Pišot, Rado, Šimunič, Boštjan, Toniolo, Luana, Blaauw, Bert, Sandri, Marco, Biolo, Gianni, Flück, Martin, Narici, Marco V, Mann, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896895/
https://www.ncbi.nlm.nih.gov/pubmed/36741463
http://dx.doi.org/10.1093/pnasnexus/pgac086
_version_ 1784882143049023488
author Murgia, Marta
Ciciliot, Stefano
Nagaraj, Nagarjuna
Reggiani, Carlo
Schiaffino, Stefano
Franchi, Martino V
Pišot, Rado
Šimunič, Boštjan
Toniolo, Luana
Blaauw, Bert
Sandri, Marco
Biolo, Gianni
Flück, Martin
Narici, Marco V
Mann, Matthias
author_facet Murgia, Marta
Ciciliot, Stefano
Nagaraj, Nagarjuna
Reggiani, Carlo
Schiaffino, Stefano
Franchi, Martino V
Pišot, Rado
Šimunič, Boštjan
Toniolo, Luana
Blaauw, Bert
Sandri, Marco
Biolo, Gianni
Flück, Martin
Narici, Marco V
Mann, Matthias
author_sort Murgia, Marta
collection PubMed
description Astronauts experience dramatic loss of muscle mass, decreased strength, and insulin resistance, despite performing daily intense physical exercise that would lead to muscle growth on Earth. Partially mimicking spaceflight, prolonged bed rest causes muscle atrophy, loss of force, and glucose intolerance. To unravel the underlying mechanisms, we employed highly sensitive single fiber proteomics to detail the molecular remodeling caused by unloading and inactivity during bed rest and changes of the muscle proteome of astronauts before and after a mission on the International Space Station. Muscle focal adhesions, involved in fiber–matrix interaction and insulin receptor stabilization, are prominently downregulated in both bed rest and spaceflight and restored upon reloading. Pathways of antioxidant response increased strongly in slow but not in fast muscle fibers. Unloading alone upregulated markers of neuromuscular damage and the pathway controlling EIF5A hypusination. These proteomic signatures of mechanical unloading in muscle fiber subtypes contribute to disentangle the effect of microgravity from the pleiotropic challenges of spaceflight.
format Online
Article
Text
id pubmed-9896895
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-98968952023-02-04 Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics Murgia, Marta Ciciliot, Stefano Nagaraj, Nagarjuna Reggiani, Carlo Schiaffino, Stefano Franchi, Martino V Pišot, Rado Šimunič, Boštjan Toniolo, Luana Blaauw, Bert Sandri, Marco Biolo, Gianni Flück, Martin Narici, Marco V Mann, Matthias PNAS Nexus Biological, Health, and Medical Sciences Astronauts experience dramatic loss of muscle mass, decreased strength, and insulin resistance, despite performing daily intense physical exercise that would lead to muscle growth on Earth. Partially mimicking spaceflight, prolonged bed rest causes muscle atrophy, loss of force, and glucose intolerance. To unravel the underlying mechanisms, we employed highly sensitive single fiber proteomics to detail the molecular remodeling caused by unloading and inactivity during bed rest and changes of the muscle proteome of astronauts before and after a mission on the International Space Station. Muscle focal adhesions, involved in fiber–matrix interaction and insulin receptor stabilization, are prominently downregulated in both bed rest and spaceflight and restored upon reloading. Pathways of antioxidant response increased strongly in slow but not in fast muscle fibers. Unloading alone upregulated markers of neuromuscular damage and the pathway controlling EIF5A hypusination. These proteomic signatures of mechanical unloading in muscle fiber subtypes contribute to disentangle the effect of microgravity from the pleiotropic challenges of spaceflight. Oxford University Press 2022-06-11 /pmc/articles/PMC9896895/ /pubmed/36741463 http://dx.doi.org/10.1093/pnasnexus/pgac086 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the National Academy of Sciences. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Biological, Health, and Medical Sciences
Murgia, Marta
Ciciliot, Stefano
Nagaraj, Nagarjuna
Reggiani, Carlo
Schiaffino, Stefano
Franchi, Martino V
Pišot, Rado
Šimunič, Boštjan
Toniolo, Luana
Blaauw, Bert
Sandri, Marco
Biolo, Gianni
Flück, Martin
Narici, Marco V
Mann, Matthias
Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics
title Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics
title_full Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics
title_fullStr Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics
title_full_unstemmed Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics
title_short Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics
title_sort signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics
topic Biological, Health, and Medical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896895/
https://www.ncbi.nlm.nih.gov/pubmed/36741463
http://dx.doi.org/10.1093/pnasnexus/pgac086
work_keys_str_mv AT murgiamarta signaturesofmuscledisuseinspaceflightandbedrestrevealedbysinglemusclefiberproteomics
AT ciciliotstefano signaturesofmuscledisuseinspaceflightandbedrestrevealedbysinglemusclefiberproteomics
AT nagarajnagarjuna signaturesofmuscledisuseinspaceflightandbedrestrevealedbysinglemusclefiberproteomics
AT reggianicarlo signaturesofmuscledisuseinspaceflightandbedrestrevealedbysinglemusclefiberproteomics
AT schiaffinostefano signaturesofmuscledisuseinspaceflightandbedrestrevealedbysinglemusclefiberproteomics
AT franchimartinov signaturesofmuscledisuseinspaceflightandbedrestrevealedbysinglemusclefiberproteomics
AT pisotrado signaturesofmuscledisuseinspaceflightandbedrestrevealedbysinglemusclefiberproteomics
AT simunicbostjan signaturesofmuscledisuseinspaceflightandbedrestrevealedbysinglemusclefiberproteomics
AT toniololuana signaturesofmuscledisuseinspaceflightandbedrestrevealedbysinglemusclefiberproteomics
AT blaauwbert signaturesofmuscledisuseinspaceflightandbedrestrevealedbysinglemusclefiberproteomics
AT sandrimarco signaturesofmuscledisuseinspaceflightandbedrestrevealedbysinglemusclefiberproteomics
AT biologianni signaturesofmuscledisuseinspaceflightandbedrestrevealedbysinglemusclefiberproteomics
AT fluckmartin signaturesofmuscledisuseinspaceflightandbedrestrevealedbysinglemusclefiberproteomics
AT naricimarcov signaturesofmuscledisuseinspaceflightandbedrestrevealedbysinglemusclefiberproteomics
AT mannmatthias signaturesofmuscledisuseinspaceflightandbedrestrevealedbysinglemusclefiberproteomics