Cargando…

Explainable uncertainty quantifications for deep learning-based molecular property prediction

Quantifying uncertainty in machine learning is important in new research areas with scarce high-quality data. In this work, we develop an explainable uncertainty quantification method for deep learning-based molecular property prediction. This method can capture aleatoric and epistemic uncertainties...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Chu-I, Li, Yi-Pei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898940/
https://www.ncbi.nlm.nih.gov/pubmed/36737786
http://dx.doi.org/10.1186/s13321-023-00682-3