Cargando…
Explainable uncertainty quantifications for deep learning-based molecular property prediction
Quantifying uncertainty in machine learning is important in new research areas with scarce high-quality data. In this work, we develop an explainable uncertainty quantification method for deep learning-based molecular property prediction. This method can capture aleatoric and epistemic uncertainties...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898940/ https://www.ncbi.nlm.nih.gov/pubmed/36737786 http://dx.doi.org/10.1186/s13321-023-00682-3 |