Cargando…

Explainable uncertainty quantifications for deep learning-based molecular property prediction

Quantifying uncertainty in machine learning is important in new research areas with scarce high-quality data. In this work, we develop an explainable uncertainty quantification method for deep learning-based molecular property prediction. This method can capture aleatoric and epistemic uncertainties...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Chu-I, Li, Yi-Pei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898940/
https://www.ncbi.nlm.nih.gov/pubmed/36737786
http://dx.doi.org/10.1186/s13321-023-00682-3
Descripción
Sumario:Quantifying uncertainty in machine learning is important in new research areas with scarce high-quality data. In this work, we develop an explainable uncertainty quantification method for deep learning-based molecular property prediction. This method can capture aleatoric and epistemic uncertainties separately and attribute the uncertainties to atoms present in the molecule. The atom-based uncertainty method provides an extra layer of chemical insight to the estimated uncertainties, i.e., one can analyze individual atomic uncertainty values to diagnose the chemical component that introduces uncertainty to the prediction. Our experiments suggest that atomic uncertainty can detect unseen chemical structures and identify chemical species whose data are potentially associated with significant noise. Furthermore, we propose a post-hoc calibration method to refine the uncertainty quantified by ensemble models for better confidence interval estimates. This work improves uncertainty calibration and provides a framework for assessing whether and why a prediction should be considered unreliable. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13321-023-00682-3.