Cargando…
Explainable uncertainty quantifications for deep learning-based molecular property prediction
Quantifying uncertainty in machine learning is important in new research areas with scarce high-quality data. In this work, we develop an explainable uncertainty quantification method for deep learning-based molecular property prediction. This method can capture aleatoric and epistemic uncertainties...
Autores principales: | Yang, Chu-I, Li, Yi-Pei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898940/ https://www.ncbi.nlm.nih.gov/pubmed/36737786 http://dx.doi.org/10.1186/s13321-023-00682-3 |
Ejemplares similares
-
Evaluation of Uncertainty Quantification in Deep Learning
por: Ståhl, Niclas, et al.
Publicado: (2020) -
Click-through Rate Prediction and Uncertainty Quantification Based on Bayesian Deep Learning
por: Wang, Xiaowei, et al.
Publicado: (2023) -
Robust adversarial uncertainty quantification for deep learning fine-tuning
por: Ahmed, Usman, et al.
Publicado: (2023) -
Empirical Frequentist Coverage of Deep Learning Uncertainty Quantification Procedures
por: Kompa, Benjamin, et al.
Publicado: (2021) -
Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification
por: Liu, Rongrong, et al.
Publicado: (2019)