Cargando…

Short tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum

Resistance of the human malaria parasites, Plasmodium falciparum, to artemisinins is now fully established in Southeast Asia and is gradually emerging in Sub-Saharan Africa. Although nonsynonymous SNPs in the pfk13 Kelch-repeat propeller (KREP) domain are clearly associated with artemisinin resistan...

Descripción completa

Detalles Bibliográficos
Autores principales: Kucharski, Michal, Wirjanata, Grennady, Nayak, Sourav, Boentoro, Josephine, Dziekan, Jerzy Michal, Assisi, Christina, van der Pluijm, Rob W., Miotto, Olivo, Mok, Sachel, Dondorp, Arjen M., Bozdech, Zbynek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901795/
https://www.ncbi.nlm.nih.gov/pubmed/36696458
http://dx.doi.org/10.1371/journal.ppat.1011118
_version_ 1784883098031226880
author Kucharski, Michal
Wirjanata, Grennady
Nayak, Sourav
Boentoro, Josephine
Dziekan, Jerzy Michal
Assisi, Christina
van der Pluijm, Rob W.
Miotto, Olivo
Mok, Sachel
Dondorp, Arjen M.
Bozdech, Zbynek
author_facet Kucharski, Michal
Wirjanata, Grennady
Nayak, Sourav
Boentoro, Josephine
Dziekan, Jerzy Michal
Assisi, Christina
van der Pluijm, Rob W.
Miotto, Olivo
Mok, Sachel
Dondorp, Arjen M.
Bozdech, Zbynek
author_sort Kucharski, Michal
collection PubMed
description Resistance of the human malaria parasites, Plasmodium falciparum, to artemisinins is now fully established in Southeast Asia and is gradually emerging in Sub-Saharan Africa. Although nonsynonymous SNPs in the pfk13 Kelch-repeat propeller (KREP) domain are clearly associated with artemisinin resistance, their functional relevance requires cooperation with other genetic factors/alterations of the P. falciparum genome, collectively referred to as genetic background. Here we provide experimental evidence that P. falciparum cyclophilin 19B (PfCYP19B) may represent one putative factor in this genetic background, contributing to artemisinin resistance via its increased expression. We show that overexpression of PfCYP19B in vitro drives limited but significant resistance to not only artemisinin but also piperaquine, an important partner drug in artemisinin-based combination therapies. We showed that PfCYP19B acts as a negative regulator of the integrated stress response (ISR) pathway by modulating levels of phosphorylated eIF2α (eIF2α-P). Curiously, artemisinin and piperaquine affect eIF2α-P in an inverse direction that in both cases can be modulated by PfCYP19B towards resistance. Here we also provide evidence that the upregulation of PfCYP19B in the drug-resistant parasites appears to be maintained by a short tandem repeat (SRT) sequence polymorphism in the gene’s promoter region. These results support a model that artemisinin (and other drugs) resistance mechanisms are complex genetic traits being contributed to by altered expression of multiple genes driven by genetic polymorphism at their promoter regions.
format Online
Article
Text
id pubmed-9901795
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-99017952023-02-07 Short tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum Kucharski, Michal Wirjanata, Grennady Nayak, Sourav Boentoro, Josephine Dziekan, Jerzy Michal Assisi, Christina van der Pluijm, Rob W. Miotto, Olivo Mok, Sachel Dondorp, Arjen M. Bozdech, Zbynek PLoS Pathog Research Article Resistance of the human malaria parasites, Plasmodium falciparum, to artemisinins is now fully established in Southeast Asia and is gradually emerging in Sub-Saharan Africa. Although nonsynonymous SNPs in the pfk13 Kelch-repeat propeller (KREP) domain are clearly associated with artemisinin resistance, their functional relevance requires cooperation with other genetic factors/alterations of the P. falciparum genome, collectively referred to as genetic background. Here we provide experimental evidence that P. falciparum cyclophilin 19B (PfCYP19B) may represent one putative factor in this genetic background, contributing to artemisinin resistance via its increased expression. We show that overexpression of PfCYP19B in vitro drives limited but significant resistance to not only artemisinin but also piperaquine, an important partner drug in artemisinin-based combination therapies. We showed that PfCYP19B acts as a negative regulator of the integrated stress response (ISR) pathway by modulating levels of phosphorylated eIF2α (eIF2α-P). Curiously, artemisinin and piperaquine affect eIF2α-P in an inverse direction that in both cases can be modulated by PfCYP19B towards resistance. Here we also provide evidence that the upregulation of PfCYP19B in the drug-resistant parasites appears to be maintained by a short tandem repeat (SRT) sequence polymorphism in the gene’s promoter region. These results support a model that artemisinin (and other drugs) resistance mechanisms are complex genetic traits being contributed to by altered expression of multiple genes driven by genetic polymorphism at their promoter regions. Public Library of Science 2023-01-25 /pmc/articles/PMC9901795/ /pubmed/36696458 http://dx.doi.org/10.1371/journal.ppat.1011118 Text en © 2023 Kucharski et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Kucharski, Michal
Wirjanata, Grennady
Nayak, Sourav
Boentoro, Josephine
Dziekan, Jerzy Michal
Assisi, Christina
van der Pluijm, Rob W.
Miotto, Olivo
Mok, Sachel
Dondorp, Arjen M.
Bozdech, Zbynek
Short tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum
title Short tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum
title_full Short tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum
title_fullStr Short tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum
title_full_unstemmed Short tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum
title_short Short tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum
title_sort short tandem repeat polymorphism in the promoter region of cyclophilin 19b drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite plasmodium falciparum
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901795/
https://www.ncbi.nlm.nih.gov/pubmed/36696458
http://dx.doi.org/10.1371/journal.ppat.1011118
work_keys_str_mv AT kucharskimichal shorttandemrepeatpolymorphisminthepromoterregionofcyclophilin19bdrivesitstranscriptionalupregulationandcontributestodrugresistanceinthemalariaparasiteplasmodiumfalciparum
AT wirjanatagrennady shorttandemrepeatpolymorphisminthepromoterregionofcyclophilin19bdrivesitstranscriptionalupregulationandcontributestodrugresistanceinthemalariaparasiteplasmodiumfalciparum
AT nayaksourav shorttandemrepeatpolymorphisminthepromoterregionofcyclophilin19bdrivesitstranscriptionalupregulationandcontributestodrugresistanceinthemalariaparasiteplasmodiumfalciparum
AT boentorojosephine shorttandemrepeatpolymorphisminthepromoterregionofcyclophilin19bdrivesitstranscriptionalupregulationandcontributestodrugresistanceinthemalariaparasiteplasmodiumfalciparum
AT dziekanjerzymichal shorttandemrepeatpolymorphisminthepromoterregionofcyclophilin19bdrivesitstranscriptionalupregulationandcontributestodrugresistanceinthemalariaparasiteplasmodiumfalciparum
AT assisichristina shorttandemrepeatpolymorphisminthepromoterregionofcyclophilin19bdrivesitstranscriptionalupregulationandcontributestodrugresistanceinthemalariaparasiteplasmodiumfalciparum
AT vanderpluijmrobw shorttandemrepeatpolymorphisminthepromoterregionofcyclophilin19bdrivesitstranscriptionalupregulationandcontributestodrugresistanceinthemalariaparasiteplasmodiumfalciparum
AT miottoolivo shorttandemrepeatpolymorphisminthepromoterregionofcyclophilin19bdrivesitstranscriptionalupregulationandcontributestodrugresistanceinthemalariaparasiteplasmodiumfalciparum
AT moksachel shorttandemrepeatpolymorphisminthepromoterregionofcyclophilin19bdrivesitstranscriptionalupregulationandcontributestodrugresistanceinthemalariaparasiteplasmodiumfalciparum
AT dondorparjenm shorttandemrepeatpolymorphisminthepromoterregionofcyclophilin19bdrivesitstranscriptionalupregulationandcontributestodrugresistanceinthemalariaparasiteplasmodiumfalciparum
AT bozdechzbynek shorttandemrepeatpolymorphisminthepromoterregionofcyclophilin19bdrivesitstranscriptionalupregulationandcontributestodrugresistanceinthemalariaparasiteplasmodiumfalciparum