Cargando…
Conditional Fragment Ion Probabilities Improve Database Searching for Nonmonoisotopic Precursors
[Image: see text] Stochastic, intensity-based precursor isolation can result in isotopically enriched fragment ions. This problem is exacerbated for large peptides and stable isotope labeling experiments using deuterium or (15)N. For stable isotope labeling experiments, incomplete and ubiquitous lab...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903324/ https://www.ncbi.nlm.nih.gov/pubmed/36414539 http://dx.doi.org/10.1021/acs.jproteome.2c00247 |
_version_ | 1784883449011634176 |
---|---|
author | O’Brien, Jonathon J. Gadzuk-Shea, Meagan Seitzer, Phillip M. Rad, Ramin McAllister, Fiona E. Schweppe, Devin K. |
author_facet | O’Brien, Jonathon J. Gadzuk-Shea, Meagan Seitzer, Phillip M. Rad, Ramin McAllister, Fiona E. Schweppe, Devin K. |
author_sort | O’Brien, Jonathon J. |
collection | PubMed |
description | [Image: see text] Stochastic, intensity-based precursor isolation can result in isotopically enriched fragment ions. This problem is exacerbated for large peptides and stable isotope labeling experiments using deuterium or (15)N. For stable isotope labeling experiments, incomplete and ubiquitous labeling strategies result in the isolation of peptide ions composed of many distinct structural isomers. Unfortunately, existing proteomics search algorithms do not account for this variability in isotopic incorporation, and thus often yield poor peptide and protein identification rates. We sought to resolve this shortcoming by deriving the expected isotopic distributions of each fragment ion and incorporating them into the theoretical mass spectra used for peptide-spectrum-matching. We adapted the Comet search platform to integrate a modified spectral prediction algorithm we term Conditional fragment Ion Distribution Search (CIDS). Comet-CIDS uses a traditional database searching strategy, but for each candidate peptide we compute the isotopic distribution of each fragment to better match the observed m/z distributions. Evaluating previously generated D(2)O and (15)N labeled data sets, we found that Comet-CIDS identified more confident peptide spectral matches and higher protein sequence coverage compared to traditional theoretical spectra generation, with the magnitude of improvement largely determined by the amount of labeling in the sample. |
format | Online Article Text |
id | pubmed-9903324 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-99033242023-02-08 Conditional Fragment Ion Probabilities Improve Database Searching for Nonmonoisotopic Precursors O’Brien, Jonathon J. Gadzuk-Shea, Meagan Seitzer, Phillip M. Rad, Ramin McAllister, Fiona E. Schweppe, Devin K. J Proteome Res [Image: see text] Stochastic, intensity-based precursor isolation can result in isotopically enriched fragment ions. This problem is exacerbated for large peptides and stable isotope labeling experiments using deuterium or (15)N. For stable isotope labeling experiments, incomplete and ubiquitous labeling strategies result in the isolation of peptide ions composed of many distinct structural isomers. Unfortunately, existing proteomics search algorithms do not account for this variability in isotopic incorporation, and thus often yield poor peptide and protein identification rates. We sought to resolve this shortcoming by deriving the expected isotopic distributions of each fragment ion and incorporating them into the theoretical mass spectra used for peptide-spectrum-matching. We adapted the Comet search platform to integrate a modified spectral prediction algorithm we term Conditional fragment Ion Distribution Search (CIDS). Comet-CIDS uses a traditional database searching strategy, but for each candidate peptide we compute the isotopic distribution of each fragment to better match the observed m/z distributions. Evaluating previously generated D(2)O and (15)N labeled data sets, we found that Comet-CIDS identified more confident peptide spectral matches and higher protein sequence coverage compared to traditional theoretical spectra generation, with the magnitude of improvement largely determined by the amount of labeling in the sample. American Chemical Society 2022-11-22 /pmc/articles/PMC9903324/ /pubmed/36414539 http://dx.doi.org/10.1021/acs.jproteome.2c00247 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | O’Brien, Jonathon J. Gadzuk-Shea, Meagan Seitzer, Phillip M. Rad, Ramin McAllister, Fiona E. Schweppe, Devin K. Conditional Fragment Ion Probabilities Improve Database Searching for Nonmonoisotopic Precursors |
title | Conditional Fragment
Ion Probabilities Improve Database
Searching for Nonmonoisotopic Precursors |
title_full | Conditional Fragment
Ion Probabilities Improve Database
Searching for Nonmonoisotopic Precursors |
title_fullStr | Conditional Fragment
Ion Probabilities Improve Database
Searching for Nonmonoisotopic Precursors |
title_full_unstemmed | Conditional Fragment
Ion Probabilities Improve Database
Searching for Nonmonoisotopic Precursors |
title_short | Conditional Fragment
Ion Probabilities Improve Database
Searching for Nonmonoisotopic Precursors |
title_sort | conditional fragment
ion probabilities improve database
searching for nonmonoisotopic precursors |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903324/ https://www.ncbi.nlm.nih.gov/pubmed/36414539 http://dx.doi.org/10.1021/acs.jproteome.2c00247 |
work_keys_str_mv | AT obrienjonathonj conditionalfragmentionprobabilitiesimprovedatabasesearchingfornonmonoisotopicprecursors AT gadzuksheameagan conditionalfragmentionprobabilitiesimprovedatabasesearchingfornonmonoisotopicprecursors AT seitzerphillipm conditionalfragmentionprobabilitiesimprovedatabasesearchingfornonmonoisotopicprecursors AT radramin conditionalfragmentionprobabilitiesimprovedatabasesearchingfornonmonoisotopicprecursors AT mcallisterfionae conditionalfragmentionprobabilitiesimprovedatabasesearchingfornonmonoisotopicprecursors AT schweppedevink conditionalfragmentionprobabilitiesimprovedatabasesearchingfornonmonoisotopicprecursors |