Cargando…

Conditional Fragment Ion Probabilities Improve Database Searching for Nonmonoisotopic Precursors

[Image: see text] Stochastic, intensity-based precursor isolation can result in isotopically enriched fragment ions. This problem is exacerbated for large peptides and stable isotope labeling experiments using deuterium or (15)N. For stable isotope labeling experiments, incomplete and ubiquitous lab...

Descripción completa

Detalles Bibliográficos
Autores principales: O’Brien, Jonathon J., Gadzuk-Shea, Meagan, Seitzer, Phillip M., Rad, Ramin, McAllister, Fiona E., Schweppe, Devin K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903324/
https://www.ncbi.nlm.nih.gov/pubmed/36414539
http://dx.doi.org/10.1021/acs.jproteome.2c00247
_version_ 1784883449011634176
author O’Brien, Jonathon J.
Gadzuk-Shea, Meagan
Seitzer, Phillip M.
Rad, Ramin
McAllister, Fiona E.
Schweppe, Devin K.
author_facet O’Brien, Jonathon J.
Gadzuk-Shea, Meagan
Seitzer, Phillip M.
Rad, Ramin
McAllister, Fiona E.
Schweppe, Devin K.
author_sort O’Brien, Jonathon J.
collection PubMed
description [Image: see text] Stochastic, intensity-based precursor isolation can result in isotopically enriched fragment ions. This problem is exacerbated for large peptides and stable isotope labeling experiments using deuterium or (15)N. For stable isotope labeling experiments, incomplete and ubiquitous labeling strategies result in the isolation of peptide ions composed of many distinct structural isomers. Unfortunately, existing proteomics search algorithms do not account for this variability in isotopic incorporation, and thus often yield poor peptide and protein identification rates. We sought to resolve this shortcoming by deriving the expected isotopic distributions of each fragment ion and incorporating them into the theoretical mass spectra used for peptide-spectrum-matching. We adapted the Comet search platform to integrate a modified spectral prediction algorithm we term Conditional fragment Ion Distribution Search (CIDS). Comet-CIDS uses a traditional database searching strategy, but for each candidate peptide we compute the isotopic distribution of each fragment to better match the observed m/z distributions. Evaluating previously generated D(2)O and (15)N labeled data sets, we found that Comet-CIDS identified more confident peptide spectral matches and higher protein sequence coverage compared to traditional theoretical spectra generation, with the magnitude of improvement largely determined by the amount of labeling in the sample.
format Online
Article
Text
id pubmed-9903324
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-99033242023-02-08 Conditional Fragment Ion Probabilities Improve Database Searching for Nonmonoisotopic Precursors O’Brien, Jonathon J. Gadzuk-Shea, Meagan Seitzer, Phillip M. Rad, Ramin McAllister, Fiona E. Schweppe, Devin K. J Proteome Res [Image: see text] Stochastic, intensity-based precursor isolation can result in isotopically enriched fragment ions. This problem is exacerbated for large peptides and stable isotope labeling experiments using deuterium or (15)N. For stable isotope labeling experiments, incomplete and ubiquitous labeling strategies result in the isolation of peptide ions composed of many distinct structural isomers. Unfortunately, existing proteomics search algorithms do not account for this variability in isotopic incorporation, and thus often yield poor peptide and protein identification rates. We sought to resolve this shortcoming by deriving the expected isotopic distributions of each fragment ion and incorporating them into the theoretical mass spectra used for peptide-spectrum-matching. We adapted the Comet search platform to integrate a modified spectral prediction algorithm we term Conditional fragment Ion Distribution Search (CIDS). Comet-CIDS uses a traditional database searching strategy, but for each candidate peptide we compute the isotopic distribution of each fragment to better match the observed m/z distributions. Evaluating previously generated D(2)O and (15)N labeled data sets, we found that Comet-CIDS identified more confident peptide spectral matches and higher protein sequence coverage compared to traditional theoretical spectra generation, with the magnitude of improvement largely determined by the amount of labeling in the sample. American Chemical Society 2022-11-22 /pmc/articles/PMC9903324/ /pubmed/36414539 http://dx.doi.org/10.1021/acs.jproteome.2c00247 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle O’Brien, Jonathon J.
Gadzuk-Shea, Meagan
Seitzer, Phillip M.
Rad, Ramin
McAllister, Fiona E.
Schweppe, Devin K.
Conditional Fragment Ion Probabilities Improve Database Searching for Nonmonoisotopic Precursors
title Conditional Fragment Ion Probabilities Improve Database Searching for Nonmonoisotopic Precursors
title_full Conditional Fragment Ion Probabilities Improve Database Searching for Nonmonoisotopic Precursors
title_fullStr Conditional Fragment Ion Probabilities Improve Database Searching for Nonmonoisotopic Precursors
title_full_unstemmed Conditional Fragment Ion Probabilities Improve Database Searching for Nonmonoisotopic Precursors
title_short Conditional Fragment Ion Probabilities Improve Database Searching for Nonmonoisotopic Precursors
title_sort conditional fragment ion probabilities improve database searching for nonmonoisotopic precursors
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903324/
https://www.ncbi.nlm.nih.gov/pubmed/36414539
http://dx.doi.org/10.1021/acs.jproteome.2c00247
work_keys_str_mv AT obrienjonathonj conditionalfragmentionprobabilitiesimprovedatabasesearchingfornonmonoisotopicprecursors
AT gadzuksheameagan conditionalfragmentionprobabilitiesimprovedatabasesearchingfornonmonoisotopicprecursors
AT seitzerphillipm conditionalfragmentionprobabilitiesimprovedatabasesearchingfornonmonoisotopicprecursors
AT radramin conditionalfragmentionprobabilitiesimprovedatabasesearchingfornonmonoisotopicprecursors
AT mcallisterfionae conditionalfragmentionprobabilitiesimprovedatabasesearchingfornonmonoisotopicprecursors
AT schweppedevink conditionalfragmentionprobabilitiesimprovedatabasesearchingfornonmonoisotopicprecursors