Cargando…
SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network
MOTIVATION: Synthetic lethality (SL) is a form of genetic interaction that can selectively kill cancer cells without damaging normal cells. Exploiting this mechanism is gaining popularity in the field of targeted cancer therapy and anticancer drug development. Due to the limitations of identifying S...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907046/ https://www.ncbi.nlm.nih.gov/pubmed/36645245 http://dx.doi.org/10.1093/bioinformatics/btad015 |
_version_ | 1784884092112732160 |
---|---|
author | Zhu, Yan Zhou, Yuhuan Liu, Yang Wang, Xuan Li, Junyi |
author_facet | Zhu, Yan Zhou, Yuhuan Liu, Yang Wang, Xuan Li, Junyi |
author_sort | Zhu, Yan |
collection | PubMed |
description | MOTIVATION: Synthetic lethality (SL) is a form of genetic interaction that can selectively kill cancer cells without damaging normal cells. Exploiting this mechanism is gaining popularity in the field of targeted cancer therapy and anticancer drug development. Due to the limitations of identifying SL interactions from laboratory experiments, an increasing number of research groups are devising computational prediction methods to guide the discovery of potential SL pairs. Although existing methods have attempted to capture the underlying mechanisms of SL interactions, methods that have a deeper understanding of and attempt to explain SL mechanisms still need to be developed. RESULTS: In this work, we propose a novel SL prediction method, SLGNN. This method is based on the following assumption: SL interactions are caused by different molecular events or biological processes, which we define as SL-related factors that lead to SL interactions. SLGNN, apart from identifying SL interaction pairs, also models the preferences of genes for different SL-related factors, making the results more interpretable for biologists and clinicians. SLGNN consists of three steps: first, we model the combinations of relationships in the gene-related knowledge graph as the SL-related factors. Next, we derive initial embeddings of genes through an explicit message aggregation process of the knowledge graph. Finally, we derive the final gene embeddings through an SL graph, constructed using known SL gene pairs, utilizing factor-based message aggregation. At this stage, a supervised end-to-end training model is used for SL interaction prediction. Based on experimental results, the proposed SLGNN model outperforms all current state-of-the-art SL prediction methods and provides better interpretability. AVAILABILITY AND IMPLEMENTATION: SLGNN is freely available at https://github.com/zy972014452/SLGNN. |
format | Online Article Text |
id | pubmed-9907046 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-99070462023-02-09 SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network Zhu, Yan Zhou, Yuhuan Liu, Yang Wang, Xuan Li, Junyi Bioinformatics Original Paper MOTIVATION: Synthetic lethality (SL) is a form of genetic interaction that can selectively kill cancer cells without damaging normal cells. Exploiting this mechanism is gaining popularity in the field of targeted cancer therapy and anticancer drug development. Due to the limitations of identifying SL interactions from laboratory experiments, an increasing number of research groups are devising computational prediction methods to guide the discovery of potential SL pairs. Although existing methods have attempted to capture the underlying mechanisms of SL interactions, methods that have a deeper understanding of and attempt to explain SL mechanisms still need to be developed. RESULTS: In this work, we propose a novel SL prediction method, SLGNN. This method is based on the following assumption: SL interactions are caused by different molecular events or biological processes, which we define as SL-related factors that lead to SL interactions. SLGNN, apart from identifying SL interaction pairs, also models the preferences of genes for different SL-related factors, making the results more interpretable for biologists and clinicians. SLGNN consists of three steps: first, we model the combinations of relationships in the gene-related knowledge graph as the SL-related factors. Next, we derive initial embeddings of genes through an explicit message aggregation process of the knowledge graph. Finally, we derive the final gene embeddings through an SL graph, constructed using known SL gene pairs, utilizing factor-based message aggregation. At this stage, a supervised end-to-end training model is used for SL interaction prediction. Based on experimental results, the proposed SLGNN model outperforms all current state-of-the-art SL prediction methods and provides better interpretability. AVAILABILITY AND IMPLEMENTATION: SLGNN is freely available at https://github.com/zy972014452/SLGNN. Oxford University Press 2023-01-16 /pmc/articles/PMC9907046/ /pubmed/36645245 http://dx.doi.org/10.1093/bioinformatics/btad015 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Paper Zhu, Yan Zhou, Yuhuan Liu, Yang Wang, Xuan Li, Junyi SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network |
title | SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network |
title_full | SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network |
title_fullStr | SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network |
title_full_unstemmed | SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network |
title_short | SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network |
title_sort | slgnn: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907046/ https://www.ncbi.nlm.nih.gov/pubmed/36645245 http://dx.doi.org/10.1093/bioinformatics/btad015 |
work_keys_str_mv | AT zhuyan slgnnsyntheticlethalitypredictioninhumancancersbasedonfactorawareknowledgegraphneuralnetwork AT zhouyuhuan slgnnsyntheticlethalitypredictioninhumancancersbasedonfactorawareknowledgegraphneuralnetwork AT liuyang slgnnsyntheticlethalitypredictioninhumancancersbasedonfactorawareknowledgegraphneuralnetwork AT wangxuan slgnnsyntheticlethalitypredictioninhumancancersbasedonfactorawareknowledgegraphneuralnetwork AT lijunyi slgnnsyntheticlethalitypredictioninhumancancersbasedonfactorawareknowledgegraphneuralnetwork |