Cargando…
SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network
MOTIVATION: Synthetic lethality (SL) is a form of genetic interaction that can selectively kill cancer cells without damaging normal cells. Exploiting this mechanism is gaining popularity in the field of targeted cancer therapy and anticancer drug development. Due to the limitations of identifying S...
Autores principales: | Zhu, Yan, Zhou, Yuhuan, Liu, Yang, Wang, Xuan, Li, Junyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907046/ https://www.ncbi.nlm.nih.gov/pubmed/36645245 http://dx.doi.org/10.1093/bioinformatics/btad015 |
Ejemplares similares
-
KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers
por: Wang, Shike, et al.
Publicado: (2021) -
KR4SL: knowledge graph reasoning for explainable prediction of synthetic lethality
por: Zhang, Ke, et al.
Publicado: (2023) -
Multi-view graph convolutional network for cancer cell-specific synthetic lethality prediction
por: Fan, Kunjie, et al.
Publicado: (2023) -
Degree-Aware Graph Neural Network Quantization
por: Fan, Ziqin, et al.
Publicado: (2023) -
Uncertainty-aware prediction of chemical reaction yields with graph neural networks
por: Kwon, Youngchun, et al.
Publicado: (2022)