Cargando…
Efficient penalized generalized linear mixed models for variable selection and genetic risk prediction in high-dimensional data
MOTIVATION: Sparse regularized regression methods are now widely used in genome-wide association studies (GWAS) to address the multiple testing burden that limits discovery of potentially important predictors. Linear mixed models (LMMs) have become an attractive alternative to principal components (...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907224/ https://www.ncbi.nlm.nih.gov/pubmed/36708013 http://dx.doi.org/10.1093/bioinformatics/btad063 |