Cargando…

Efficient penalized generalized linear mixed models for variable selection and genetic risk prediction in high-dimensional data

MOTIVATION: Sparse regularized regression methods are now widely used in genome-wide association studies (GWAS) to address the multiple testing burden that limits discovery of potentially important predictors. Linear mixed models (LMMs) have become an attractive alternative to principal components (...

Descripción completa

Detalles Bibliográficos
Autores principales: St-Pierre, Julien, Oualkacha, Karim, Bhatnagar, Sahir Rai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907224/
https://www.ncbi.nlm.nih.gov/pubmed/36708013
http://dx.doi.org/10.1093/bioinformatics/btad063