Cargando…
Efficient penalized generalized linear mixed models for variable selection and genetic risk prediction in high-dimensional data
MOTIVATION: Sparse regularized regression methods are now widely used in genome-wide association studies (GWAS) to address the multiple testing burden that limits discovery of potentially important predictors. Linear mixed models (LMMs) have become an attractive alternative to principal components (...
Autores principales: | St-Pierre, Julien, Oualkacha, Karim, Bhatnagar, Sahir Rai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907224/ https://www.ncbi.nlm.nih.gov/pubmed/36708013 http://dx.doi.org/10.1093/bioinformatics/btad063 |
Ejemplares similares
-
Block coordinate descent algorithm improves variable selection and estimation in error‐in‐variables regression
por: Escribe, Célia, et al.
Publicado: (2021) -
Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models
por: Bhatnagar, Sahir R., et al.
Publicado: (2020) -
Joint analysis of multiple blood pressure phenotypes in GAW19 data by using a multivariate rare-variant association test
por: Sun, Jianping, et al.
Publicado: (2016) -
A penalized linear mixed model with generalized method of moments for prediction analysis on high-dimensional multi-omics data
por: Wang, Xiaqiong, et al.
Publicado: (2022) -
Feature Screening for High-Dimensional Variable Selection in Generalized Linear Models
por: Jiang, Jinzhu, et al.
Publicado: (2023)