Cargando…

Parameterization of a single H-bond in Orange Carotenoid Protein by atomic mutation reveals principles of evolutionary design of complex chemical photosystems

Introduction: Dissecting the intricate networks of covalent and non-covalent interactions that stabilize complex protein structures is notoriously difficult and requires subtle atomic-level exchanges to precisely affect local chemical functionality. The function of the Orange Carotenoid Protein (OCP...

Descripción completa

Detalles Bibliográficos
Autores principales: Moldenhauer, Marcus, Tseng, Hsueh-Wei, Kraskov, Anastasia, Tavraz, Neslihan N., Yaroshevich, Igor A., Hildebrandt, Peter, Sluchanko, Nikolai N., Hochberg, Georg A., Essen, Lars-Oliver, Budisa, Nediljko, Korf, Lukas, Maksimov, Eugene G., Friedrich, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909426/
https://www.ncbi.nlm.nih.gov/pubmed/36776742
http://dx.doi.org/10.3389/fmolb.2023.1072606
_version_ 1784884574686281728
author Moldenhauer, Marcus
Tseng, Hsueh-Wei
Kraskov, Anastasia
Tavraz, Neslihan N.
Yaroshevich, Igor A.
Hildebrandt, Peter
Sluchanko, Nikolai N.
Hochberg, Georg A.
Essen, Lars-Oliver
Budisa, Nediljko
Korf, Lukas
Maksimov, Eugene G.
Friedrich, Thomas
author_facet Moldenhauer, Marcus
Tseng, Hsueh-Wei
Kraskov, Anastasia
Tavraz, Neslihan N.
Yaroshevich, Igor A.
Hildebrandt, Peter
Sluchanko, Nikolai N.
Hochberg, Georg A.
Essen, Lars-Oliver
Budisa, Nediljko
Korf, Lukas
Maksimov, Eugene G.
Friedrich, Thomas
author_sort Moldenhauer, Marcus
collection PubMed
description Introduction: Dissecting the intricate networks of covalent and non-covalent interactions that stabilize complex protein structures is notoriously difficult and requires subtle atomic-level exchanges to precisely affect local chemical functionality. The function of the Orange Carotenoid Protein (OCP), a light-driven photoswitch involved in cyanobacterial photoprotection, depends strongly on two H-bonds between the 4-ketolated xanthophyll cofactor and two highly conserved residues in the C-terminal domain (Trp288 and Tyr201). Method: By orthogonal translation, we replaced Trp288 in Synechocystis OCP with 3-benzothienyl-L-alanine (BTA), thereby exchanging the imino nitrogen for a sulphur atom. Results: Although the high-resolution (1.8 Å) crystal structure of the fully photoactive OCP-W288_BTA protein showed perfect isomorphism to the native structure, the spectroscopic and kinetic properties changed distinctly. We accurately parameterized the effects of the absence of a single H-bond on the spectroscopic and thermodynamic properties of OCP photoconversion and reveal general principles underlying the design of photoreceptors by natural evolution. Discussion: Such “molecular surgery” is superior over trial-and-error methods in hypothesis-driven research of complex chemical systems.
format Online
Article
Text
id pubmed-9909426
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-99094262023-02-10 Parameterization of a single H-bond in Orange Carotenoid Protein by atomic mutation reveals principles of evolutionary design of complex chemical photosystems Moldenhauer, Marcus Tseng, Hsueh-Wei Kraskov, Anastasia Tavraz, Neslihan N. Yaroshevich, Igor A. Hildebrandt, Peter Sluchanko, Nikolai N. Hochberg, Georg A. Essen, Lars-Oliver Budisa, Nediljko Korf, Lukas Maksimov, Eugene G. Friedrich, Thomas Front Mol Biosci Molecular Biosciences Introduction: Dissecting the intricate networks of covalent and non-covalent interactions that stabilize complex protein structures is notoriously difficult and requires subtle atomic-level exchanges to precisely affect local chemical functionality. The function of the Orange Carotenoid Protein (OCP), a light-driven photoswitch involved in cyanobacterial photoprotection, depends strongly on two H-bonds between the 4-ketolated xanthophyll cofactor and two highly conserved residues in the C-terminal domain (Trp288 and Tyr201). Method: By orthogonal translation, we replaced Trp288 in Synechocystis OCP with 3-benzothienyl-L-alanine (BTA), thereby exchanging the imino nitrogen for a sulphur atom. Results: Although the high-resolution (1.8 Å) crystal structure of the fully photoactive OCP-W288_BTA protein showed perfect isomorphism to the native structure, the spectroscopic and kinetic properties changed distinctly. We accurately parameterized the effects of the absence of a single H-bond on the spectroscopic and thermodynamic properties of OCP photoconversion and reveal general principles underlying the design of photoreceptors by natural evolution. Discussion: Such “molecular surgery” is superior over trial-and-error methods in hypothesis-driven research of complex chemical systems. Frontiers Media S.A. 2023-01-26 /pmc/articles/PMC9909426/ /pubmed/36776742 http://dx.doi.org/10.3389/fmolb.2023.1072606 Text en Copyright © 2023 Moldenhauer, Tseng, Kraskov, Tavraz, Yaroshevich, Hildebrandt, Sluchanko, Hochberg, Essen, Budisa, Korf, Maksimov and Friedrich. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Molecular Biosciences
Moldenhauer, Marcus
Tseng, Hsueh-Wei
Kraskov, Anastasia
Tavraz, Neslihan N.
Yaroshevich, Igor A.
Hildebrandt, Peter
Sluchanko, Nikolai N.
Hochberg, Georg A.
Essen, Lars-Oliver
Budisa, Nediljko
Korf, Lukas
Maksimov, Eugene G.
Friedrich, Thomas
Parameterization of a single H-bond in Orange Carotenoid Protein by atomic mutation reveals principles of evolutionary design of complex chemical photosystems
title Parameterization of a single H-bond in Orange Carotenoid Protein by atomic mutation reveals principles of evolutionary design of complex chemical photosystems
title_full Parameterization of a single H-bond in Orange Carotenoid Protein by atomic mutation reveals principles of evolutionary design of complex chemical photosystems
title_fullStr Parameterization of a single H-bond in Orange Carotenoid Protein by atomic mutation reveals principles of evolutionary design of complex chemical photosystems
title_full_unstemmed Parameterization of a single H-bond in Orange Carotenoid Protein by atomic mutation reveals principles of evolutionary design of complex chemical photosystems
title_short Parameterization of a single H-bond in Orange Carotenoid Protein by atomic mutation reveals principles of evolutionary design of complex chemical photosystems
title_sort parameterization of a single h-bond in orange carotenoid protein by atomic mutation reveals principles of evolutionary design of complex chemical photosystems
topic Molecular Biosciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909426/
https://www.ncbi.nlm.nih.gov/pubmed/36776742
http://dx.doi.org/10.3389/fmolb.2023.1072606
work_keys_str_mv AT moldenhauermarcus parameterizationofasinglehbondinorangecarotenoidproteinbyatomicmutationrevealsprinciplesofevolutionarydesignofcomplexchemicalphotosystems
AT tsenghsuehwei parameterizationofasinglehbondinorangecarotenoidproteinbyatomicmutationrevealsprinciplesofevolutionarydesignofcomplexchemicalphotosystems
AT kraskovanastasia parameterizationofasinglehbondinorangecarotenoidproteinbyatomicmutationrevealsprinciplesofevolutionarydesignofcomplexchemicalphotosystems
AT tavrazneslihann parameterizationofasinglehbondinorangecarotenoidproteinbyatomicmutationrevealsprinciplesofevolutionarydesignofcomplexchemicalphotosystems
AT yaroshevichigora parameterizationofasinglehbondinorangecarotenoidproteinbyatomicmutationrevealsprinciplesofevolutionarydesignofcomplexchemicalphotosystems
AT hildebrandtpeter parameterizationofasinglehbondinorangecarotenoidproteinbyatomicmutationrevealsprinciplesofevolutionarydesignofcomplexchemicalphotosystems
AT sluchankonikolain parameterizationofasinglehbondinorangecarotenoidproteinbyatomicmutationrevealsprinciplesofevolutionarydesignofcomplexchemicalphotosystems
AT hochberggeorga parameterizationofasinglehbondinorangecarotenoidproteinbyatomicmutationrevealsprinciplesofevolutionarydesignofcomplexchemicalphotosystems
AT essenlarsoliver parameterizationofasinglehbondinorangecarotenoidproteinbyatomicmutationrevealsprinciplesofevolutionarydesignofcomplexchemicalphotosystems
AT budisanediljko parameterizationofasinglehbondinorangecarotenoidproteinbyatomicmutationrevealsprinciplesofevolutionarydesignofcomplexchemicalphotosystems
AT korflukas parameterizationofasinglehbondinorangecarotenoidproteinbyatomicmutationrevealsprinciplesofevolutionarydesignofcomplexchemicalphotosystems
AT maksimoveugeneg parameterizationofasinglehbondinorangecarotenoidproteinbyatomicmutationrevealsprinciplesofevolutionarydesignofcomplexchemicalphotosystems
AT friedrichthomas parameterizationofasinglehbondinorangecarotenoidproteinbyatomicmutationrevealsprinciplesofevolutionarydesignofcomplexchemicalphotosystems