Cargando…
A novel small positive allosteric modulator of neuropeptide receptor PAC1-R exerts neuroprotective effects in MPTP mouse Parkinson’s disease model: A new drug for Parkinson’s disease
As a neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP)-preferring receptor, PAC1-R mediates effective neuroprotective activity. Based on the finding that the antibiotic doxycycline (DOX) with clinical neuroprotective activity functions as a positive allosteric modulator (PAM) o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909460/ https://www.ncbi.nlm.nih.gov/pubmed/36082935 http://dx.doi.org/10.3724/abbs.2022126 |
_version_ | 1784884579349299200 |
---|---|
author | Fan, Guangchun Chen, Shang Tao, Zhengxin Zhang, Huahua Yu, Rongjie |
author_facet | Fan, Guangchun Chen, Shang Tao, Zhengxin Zhang, Huahua Yu, Rongjie |
author_sort | Fan, Guangchun |
collection | PubMed |
description | As a neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP)-preferring receptor, PAC1-R mediates effective neuroprotective activity. Based on the finding that the antibiotic doxycycline (DOX) with clinical neuroprotective activity functions as a positive allosteric modulator (PAM) of neuropeptide PACAP receptor 1 (PAC1-R), we use virtual and laboratory screening to search for novel small molecule PAMs of PAC1-R. Virtual screening is carried out using a small-molecule library TargetMol. After two-level precision screening with Glide, the top five compounds with the best predicted affinities for PAC1-R are selected and named small positive allosteric modulator 1‒5 (SPAM1‒5). Our results show that only 4-{[4-(4-Oxo-3,4-2-yl)butanamido]methyl}benzoic acid (SPAM1) has stronger neuroprotective activity than DOX in the MPP+ PD cell model and MPTP PD mouse model. SPAM1 has a higher affinity for PAC1-R than DOX, but has no antibiotic activity. Moreover, both SPAM1 and DOX block the decrease of PAC1-R level in mouse brain tissues induced by MPTP. The successful screening of SPAM1 offers a novel drug for the treatment of neurodegenerative disease targeting the PAC1-R. |
format | Online Article Text |
id | pubmed-9909460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-99094602023-02-10 A novel small positive allosteric modulator of neuropeptide receptor PAC1-R exerts neuroprotective effects in MPTP mouse Parkinson’s disease model: A new drug for Parkinson’s disease Fan, Guangchun Chen, Shang Tao, Zhengxin Zhang, Huahua Yu, Rongjie Acta Biochim Biophys Sin (Shanghai) Research Article As a neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP)-preferring receptor, PAC1-R mediates effective neuroprotective activity. Based on the finding that the antibiotic doxycycline (DOX) with clinical neuroprotective activity functions as a positive allosteric modulator (PAM) of neuropeptide PACAP receptor 1 (PAC1-R), we use virtual and laboratory screening to search for novel small molecule PAMs of PAC1-R. Virtual screening is carried out using a small-molecule library TargetMol. After two-level precision screening with Glide, the top five compounds with the best predicted affinities for PAC1-R are selected and named small positive allosteric modulator 1‒5 (SPAM1‒5). Our results show that only 4-{[4-(4-Oxo-3,4-2-yl)butanamido]methyl}benzoic acid (SPAM1) has stronger neuroprotective activity than DOX in the MPP+ PD cell model and MPTP PD mouse model. SPAM1 has a higher affinity for PAC1-R than DOX, but has no antibiotic activity. Moreover, both SPAM1 and DOX block the decrease of PAC1-R level in mouse brain tissues induced by MPTP. The successful screening of SPAM1 offers a novel drug for the treatment of neurodegenerative disease targeting the PAC1-R. Oxford University Press 2022-09-08 /pmc/articles/PMC9909460/ /pubmed/36082935 http://dx.doi.org/10.3724/abbs.2022126 Text en © The Author(s) 2021. https://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Fan, Guangchun Chen, Shang Tao, Zhengxin Zhang, Huahua Yu, Rongjie A novel small positive allosteric modulator of neuropeptide receptor PAC1-R exerts neuroprotective effects in MPTP mouse Parkinson’s disease model: A new drug for Parkinson’s disease |
title | A novel small positive allosteric modulator of neuropeptide receptor PAC1-R exerts neuroprotective effects in MPTP mouse Parkinson’s disease model: A new drug for Parkinson’s disease |
title_full | A novel small positive allosteric modulator of neuropeptide receptor PAC1-R exerts neuroprotective effects in MPTP mouse Parkinson’s disease model: A new drug for Parkinson’s disease |
title_fullStr | A novel small positive allosteric modulator of neuropeptide receptor PAC1-R exerts neuroprotective effects in MPTP mouse Parkinson’s disease model: A new drug for Parkinson’s disease |
title_full_unstemmed | A novel small positive allosteric modulator of neuropeptide receptor PAC1-R exerts neuroprotective effects in MPTP mouse Parkinson’s disease model: A new drug for Parkinson’s disease |
title_short | A novel small positive allosteric modulator of neuropeptide receptor PAC1-R exerts neuroprotective effects in MPTP mouse Parkinson’s disease model: A new drug for Parkinson’s disease |
title_sort | novel small positive allosteric modulator of neuropeptide receptor pac1-r exerts neuroprotective effects in mptp mouse parkinson’s disease model: a new drug for parkinson’s disease |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909460/ https://www.ncbi.nlm.nih.gov/pubmed/36082935 http://dx.doi.org/10.3724/abbs.2022126 |
work_keys_str_mv | AT fanguangchun anovelsmallpositiveallostericmodulatorofneuropeptidereceptorpac1rexertsneuroprotectiveeffectsinmptpmouseparkinsonsdiseasemodelanewdrugforparkinsonsdisease AT chenshang anovelsmallpositiveallostericmodulatorofneuropeptidereceptorpac1rexertsneuroprotectiveeffectsinmptpmouseparkinsonsdiseasemodelanewdrugforparkinsonsdisease AT taozhengxin anovelsmallpositiveallostericmodulatorofneuropeptidereceptorpac1rexertsneuroprotectiveeffectsinmptpmouseparkinsonsdiseasemodelanewdrugforparkinsonsdisease AT zhanghuahua anovelsmallpositiveallostericmodulatorofneuropeptidereceptorpac1rexertsneuroprotectiveeffectsinmptpmouseparkinsonsdiseasemodelanewdrugforparkinsonsdisease AT yurongjie anovelsmallpositiveallostericmodulatorofneuropeptidereceptorpac1rexertsneuroprotectiveeffectsinmptpmouseparkinsonsdiseasemodelanewdrugforparkinsonsdisease AT fanguangchun novelsmallpositiveallostericmodulatorofneuropeptidereceptorpac1rexertsneuroprotectiveeffectsinmptpmouseparkinsonsdiseasemodelanewdrugforparkinsonsdisease AT chenshang novelsmallpositiveallostericmodulatorofneuropeptidereceptorpac1rexertsneuroprotectiveeffectsinmptpmouseparkinsonsdiseasemodelanewdrugforparkinsonsdisease AT taozhengxin novelsmallpositiveallostericmodulatorofneuropeptidereceptorpac1rexertsneuroprotectiveeffectsinmptpmouseparkinsonsdiseasemodelanewdrugforparkinsonsdisease AT zhanghuahua novelsmallpositiveallostericmodulatorofneuropeptidereceptorpac1rexertsneuroprotectiveeffectsinmptpmouseparkinsonsdiseasemodelanewdrugforparkinsonsdisease AT yurongjie novelsmallpositiveallostericmodulatorofneuropeptidereceptorpac1rexertsneuroprotectiveeffectsinmptpmouseparkinsonsdiseasemodelanewdrugforparkinsonsdisease |