Cargando…
Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
BACKGROUND: It remains an important challenge to predict the functional consequences or clinical impacts of genetic variants in human diseases, such as cancer. An increasing number of genetic variants in cancer have been discovered and documented in public databases such as COSMIC, but the vast majo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909865/ https://www.ncbi.nlm.nih.gov/pubmed/36759776 http://dx.doi.org/10.1186/s12859-023-05141-2 |