Cargando…
Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
BACKGROUND: It remains an important challenge to predict the functional consequences or clinical impacts of genetic variants in human diseases, such as cancer. An increasing number of genetic variants in cancer have been discovered and documented in public databases such as COSMIC, but the vast majo...
Autores principales: | Ren, Zilin, Li, Quan, Cao, Kajia, Li, Marilyn M., Zhou, Yunyun, Wang, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909865/ https://www.ncbi.nlm.nih.gov/pubmed/36759776 http://dx.doi.org/10.1186/s12859-023-05141-2 |
Ejemplares similares
-
Correction: Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
por: Ren, Zilin, et al.
Publicado: (2023) -
CancerVar: An artificial intelligence–empowered platform for clinical interpretation of somatic mutations in cancer
por: Li, Quan, et al.
Publicado: (2022) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Semi-supervised learning improves regulatory sequence prediction with unlabeled sequences
por: Mourad, Raphaël
Publicado: (2023) -
Semi-supervised prediction of protein interaction sites from unlabeled sample information
por: Wang, Ye, et al.
Publicado: (2019)