Cargando…
Transcriptomic Deconvolution of Neuroendocrine Neoplasms Predicts Clinically Relevant Characteristics
SIMPLE SUMMARY: Rapidly growing neuroendocrine neoplasms (NEN) often defy easy classification by the pathologist. Machine learning approaches can improve the classification’s accuracy, but these generally require large amounts of training data. As tumor-based training data will remain sparse for ver...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913692/ https://www.ncbi.nlm.nih.gov/pubmed/36765893 http://dx.doi.org/10.3390/cancers15030936 |