Cargando…
Transcriptomic Deconvolution of Neuroendocrine Neoplasms Predicts Clinically Relevant Characteristics
SIMPLE SUMMARY: Rapidly growing neuroendocrine neoplasms (NEN) often defy easy classification by the pathologist. Machine learning approaches can improve the classification’s accuracy, but these generally require large amounts of training data. As tumor-based training data will remain sparse for ver...
Autores principales: | Otto, Raik, Detjen, Katharina M., Riemer, Pamela, Fattohi, Melanie, Grötzinger, Carsten, Rindi, Guido, Wiedenmann, Bertram, Sers, Christine, Leser, Ulf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913692/ https://www.ncbi.nlm.nih.gov/pubmed/36765893 http://dx.doi.org/10.3390/cancers15030936 |
Ejemplares similares
-
Elevated Flt3L Predicts Long-Term Survival in Patients with High-Grade Gastroenteropancreatic Neuroendocrine Neoplasms
por: Detjen, Katharina M., et al.
Publicado: (2021) -
Robust in-silico identification of cancer cell lines based on next generation sequencing
por: Otto, Raik, et al.
Publicado: (2017) -
Robust in-silico identification of Cancer Cell Lines based on RNA and targeted DNA sequencing data
por: Otto, Raik, et al.
Publicado: (2019) -
DNA methylation reveals distinct cells of origin for pancreatic neuroendocrine carcinomas and pancreatic neuroendocrine tumors
por: Simon, Tincy, et al.
Publicado: (2022) -
Introduction to neuroendocrine neoplasms of the digestive system: definition and classification
por: Inzani, Frediano, et al.
Publicado: (2021)