Cargando…
Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR
At low temperature, methyl groups act as hindered quantum rotors exhibiting rotational quantum tunneling, which is highly sensitive to a local methyl group environment. Recently, we observed this effect using pulsed electron paramagnetic resonance (EPR) in two dimethylammonium-containing hybrid pero...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920925/ https://www.ncbi.nlm.nih.gov/pubmed/36770643 http://dx.doi.org/10.3390/molecules28030979 |
_version_ | 1784887190001549312 |
---|---|
author | Usevičius, Gediminas Eggeling, Andrea Pocius, Ignas Kalendra, Vidmantas Klose, Daniel Mączka, Mirosław Pöppl, Andreas Banys, Jūras Jeschke, Gunnar Šimėnas, Mantas |
author_facet | Usevičius, Gediminas Eggeling, Andrea Pocius, Ignas Kalendra, Vidmantas Klose, Daniel Mączka, Mirosław Pöppl, Andreas Banys, Jūras Jeschke, Gunnar Šimėnas, Mantas |
author_sort | Usevičius, Gediminas |
collection | PubMed |
description | At low temperature, methyl groups act as hindered quantum rotors exhibiting rotational quantum tunneling, which is highly sensitive to a local methyl group environment. Recently, we observed this effect using pulsed electron paramagnetic resonance (EPR) in two dimethylammonium-containing hybrid perovskites doped with paramagnetic Mn(2+) ions. Here, we investigate the feasibility of using an alternative fast-relaxing Co(2+) paramagnetic center to study the methyl group tunneling, and, as a model compound, we use dimethylammonium zinc formate [(CH(3))(2)NH(2)][Zn(HCOO)(3)] hybrid perovskite. Our multifrequency (X-, Q- and W-band) EPR experiments reveal a high-spin state of the incorporated Co(2+) center, which exhibits fast spin-lattice relaxation and electron spin decoherence. Our pulsed EPR experiments reveal magnetic field independent electron spin echo envelope modulation (ESEEM) signals, which are assigned to the methyl group tunneling. We use density operator simulations to extract the tunnel frequency of 1.84 MHz from the experimental data, which is then used to calculate the rotational barrier of the methyl groups. We compare our results with the previously reported Mn(2+) case showing that our approach can detect very small changes in the local methyl group environment in hybrid perovskites and related materials. |
format | Online Article Text |
id | pubmed-9920925 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99209252023-02-12 Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR Usevičius, Gediminas Eggeling, Andrea Pocius, Ignas Kalendra, Vidmantas Klose, Daniel Mączka, Mirosław Pöppl, Andreas Banys, Jūras Jeschke, Gunnar Šimėnas, Mantas Molecules Article At low temperature, methyl groups act as hindered quantum rotors exhibiting rotational quantum tunneling, which is highly sensitive to a local methyl group environment. Recently, we observed this effect using pulsed electron paramagnetic resonance (EPR) in two dimethylammonium-containing hybrid perovskites doped with paramagnetic Mn(2+) ions. Here, we investigate the feasibility of using an alternative fast-relaxing Co(2+) paramagnetic center to study the methyl group tunneling, and, as a model compound, we use dimethylammonium zinc formate [(CH(3))(2)NH(2)][Zn(HCOO)(3)] hybrid perovskite. Our multifrequency (X-, Q- and W-band) EPR experiments reveal a high-spin state of the incorporated Co(2+) center, which exhibits fast spin-lattice relaxation and electron spin decoherence. Our pulsed EPR experiments reveal magnetic field independent electron spin echo envelope modulation (ESEEM) signals, which are assigned to the methyl group tunneling. We use density operator simulations to extract the tunnel frequency of 1.84 MHz from the experimental data, which is then used to calculate the rotational barrier of the methyl groups. We compare our results with the previously reported Mn(2+) case showing that our approach can detect very small changes in the local methyl group environment in hybrid perovskites and related materials. MDPI 2023-01-18 /pmc/articles/PMC9920925/ /pubmed/36770643 http://dx.doi.org/10.3390/molecules28030979 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Usevičius, Gediminas Eggeling, Andrea Pocius, Ignas Kalendra, Vidmantas Klose, Daniel Mączka, Mirosław Pöppl, Andreas Banys, Jūras Jeschke, Gunnar Šimėnas, Mantas Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR |
title | Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR |
title_full | Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR |
title_fullStr | Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR |
title_full_unstemmed | Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR |
title_short | Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR |
title_sort | probing methyl group tunneling in [(ch(3))(2)nh(2)][zn(hcoo)(3)] hybrid perovskite using co(2+) epr |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920925/ https://www.ncbi.nlm.nih.gov/pubmed/36770643 http://dx.doi.org/10.3390/molecules28030979 |
work_keys_str_mv | AT useviciusgediminas probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr AT eggelingandrea probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr AT pociusignas probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr AT kalendravidmantas probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr AT klosedaniel probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr AT maczkamirosław probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr AT popplandreas probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr AT banysjuras probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr AT jeschkegunnar probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr AT simenasmantas probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr |