Cargando…

Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR

At low temperature, methyl groups act as hindered quantum rotors exhibiting rotational quantum tunneling, which is highly sensitive to a local methyl group environment. Recently, we observed this effect using pulsed electron paramagnetic resonance (EPR) in two dimethylammonium-containing hybrid pero...

Descripción completa

Detalles Bibliográficos
Autores principales: Usevičius, Gediminas, Eggeling, Andrea, Pocius, Ignas, Kalendra, Vidmantas, Klose, Daniel, Mączka, Mirosław, Pöppl, Andreas, Banys, Jūras, Jeschke, Gunnar, Šimėnas, Mantas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920925/
https://www.ncbi.nlm.nih.gov/pubmed/36770643
http://dx.doi.org/10.3390/molecules28030979
_version_ 1784887190001549312
author Usevičius, Gediminas
Eggeling, Andrea
Pocius, Ignas
Kalendra, Vidmantas
Klose, Daniel
Mączka, Mirosław
Pöppl, Andreas
Banys, Jūras
Jeschke, Gunnar
Šimėnas, Mantas
author_facet Usevičius, Gediminas
Eggeling, Andrea
Pocius, Ignas
Kalendra, Vidmantas
Klose, Daniel
Mączka, Mirosław
Pöppl, Andreas
Banys, Jūras
Jeschke, Gunnar
Šimėnas, Mantas
author_sort Usevičius, Gediminas
collection PubMed
description At low temperature, methyl groups act as hindered quantum rotors exhibiting rotational quantum tunneling, which is highly sensitive to a local methyl group environment. Recently, we observed this effect using pulsed electron paramagnetic resonance (EPR) in two dimethylammonium-containing hybrid perovskites doped with paramagnetic Mn(2+) ions. Here, we investigate the feasibility of using an alternative fast-relaxing Co(2+) paramagnetic center to study the methyl group tunneling, and, as a model compound, we use dimethylammonium zinc formate [(CH(3))(2)NH(2)][Zn(HCOO)(3)] hybrid perovskite. Our multifrequency (X-, Q- and W-band) EPR experiments reveal a high-spin state of the incorporated Co(2+) center, which exhibits fast spin-lattice relaxation and electron spin decoherence. Our pulsed EPR experiments reveal magnetic field independent electron spin echo envelope modulation (ESEEM) signals, which are assigned to the methyl group tunneling. We use density operator simulations to extract the tunnel frequency of 1.84 MHz from the experimental data, which is then used to calculate the rotational barrier of the methyl groups. We compare our results with the previously reported Mn(2+) case showing that our approach can detect very small changes in the local methyl group environment in hybrid perovskites and related materials.
format Online
Article
Text
id pubmed-9920925
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99209252023-02-12 Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR Usevičius, Gediminas Eggeling, Andrea Pocius, Ignas Kalendra, Vidmantas Klose, Daniel Mączka, Mirosław Pöppl, Andreas Banys, Jūras Jeschke, Gunnar Šimėnas, Mantas Molecules Article At low temperature, methyl groups act as hindered quantum rotors exhibiting rotational quantum tunneling, which is highly sensitive to a local methyl group environment. Recently, we observed this effect using pulsed electron paramagnetic resonance (EPR) in two dimethylammonium-containing hybrid perovskites doped with paramagnetic Mn(2+) ions. Here, we investigate the feasibility of using an alternative fast-relaxing Co(2+) paramagnetic center to study the methyl group tunneling, and, as a model compound, we use dimethylammonium zinc formate [(CH(3))(2)NH(2)][Zn(HCOO)(3)] hybrid perovskite. Our multifrequency (X-, Q- and W-band) EPR experiments reveal a high-spin state of the incorporated Co(2+) center, which exhibits fast spin-lattice relaxation and electron spin decoherence. Our pulsed EPR experiments reveal magnetic field independent electron spin echo envelope modulation (ESEEM) signals, which are assigned to the methyl group tunneling. We use density operator simulations to extract the tunnel frequency of 1.84 MHz from the experimental data, which is then used to calculate the rotational barrier of the methyl groups. We compare our results with the previously reported Mn(2+) case showing that our approach can detect very small changes in the local methyl group environment in hybrid perovskites and related materials. MDPI 2023-01-18 /pmc/articles/PMC9920925/ /pubmed/36770643 http://dx.doi.org/10.3390/molecules28030979 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Usevičius, Gediminas
Eggeling, Andrea
Pocius, Ignas
Kalendra, Vidmantas
Klose, Daniel
Mączka, Mirosław
Pöppl, Andreas
Banys, Jūras
Jeschke, Gunnar
Šimėnas, Mantas
Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR
title Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR
title_full Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR
title_fullStr Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR
title_full_unstemmed Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR
title_short Probing Methyl Group Tunneling in [(CH(3))(2)NH(2)][Zn(HCOO)(3)] Hybrid Perovskite Using Co(2+) EPR
title_sort probing methyl group tunneling in [(ch(3))(2)nh(2)][zn(hcoo)(3)] hybrid perovskite using co(2+) epr
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920925/
https://www.ncbi.nlm.nih.gov/pubmed/36770643
http://dx.doi.org/10.3390/molecules28030979
work_keys_str_mv AT useviciusgediminas probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr
AT eggelingandrea probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr
AT pociusignas probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr
AT kalendravidmantas probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr
AT klosedaniel probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr
AT maczkamirosław probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr
AT popplandreas probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr
AT banysjuras probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr
AT jeschkegunnar probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr
AT simenasmantas probingmethylgrouptunnelinginch32nh2znhcoo3hybridperovskiteusingco2epr