Cargando…
Dual-specificity phosphatases 22-deficient T cells contribute to the pathogenesis of ankylosing spondylitis
BACKGROUND: Dual-specificity phosphatases (DUSPs) can dephosphorylate both tyrosine and serine/threonine residues of their substrates and regulate T cell-mediated immunity and autoimmunity. The aim of this study was to investigate the potential roles of DUSPs in ankylosing spondylitis (AS). METHODS:...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921195/ https://www.ncbi.nlm.nih.gov/pubmed/36765305 http://dx.doi.org/10.1186/s12916-023-02745-6 |
Sumario: | BACKGROUND: Dual-specificity phosphatases (DUSPs) can dephosphorylate both tyrosine and serine/threonine residues of their substrates and regulate T cell-mediated immunity and autoimmunity. The aim of this study was to investigate the potential roles of DUSPs in ankylosing spondylitis (AS). METHODS: Sixty AS patients and 45 healthy controls were enrolled in this study. Associations of gene expression of 23 DUSPs in peripheral T cells with inflammatory cytokine gene expression and disease activity of AS were analyzed. Finally, we investigated whether the characteristics of AS are developed in DUSP-knockout mice. RESULTS: The mRNA levels of DUSP4, DUSP5, DUSP6, DUSP7, and DUSP14 in peripheral T cells were significantly higher in AS group than those of healthy controls (all p < 0.05), while DUSP22 (also named JKAP) mRNA levels were significantly lower in AS group than healthy controls (p < 0.001). The mRNA levels of DUSP4, DUSP5, DUSP6, DUSP7, and DUSP14 in T cells were positively correlated with mRNA levels of tumor necrosis factor-α (TNF-α), whereas DUSP22 was inversely correlated (all p < 0.05). In addition, inverse correlations of DUSP22 gene expression in peripheral T cells with C-reactive protein, erythrocyte sedimentation rate, and Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) were observed (all p < 0.05). More importantly, aged DUSP22 knockout mice spontaneously developed syndesmophyte formation, which was accompanied by an increase of TNF-α(+), interleukin-17A(+), and interferon-γ(+) CD3(+) T cells. CONCLUSIONS: DUSP22 may play a crucial role in the pathogenesis and regulation of disease activity of AS. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12916-023-02745-6. |
---|