Cargando…
James–Stein for the leading eigenvector
Recent research identifies and corrects bias, such as excess dispersion, in the leading sample eigenvector of a factor-based covariance matrix estimated from a high-dimension low sample size (HL) data set. We show that eigenvector bias can have a substantial impact on variance-minimizing optimizatio...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926287/ https://www.ncbi.nlm.nih.gov/pubmed/36603029 http://dx.doi.org/10.1073/pnas.2207046120 |