Cargando…

James–Stein for the leading eigenvector

Recent research identifies and corrects bias, such as excess dispersion, in the leading sample eigenvector of a factor-based covariance matrix estimated from a high-dimension low sample size (HL) data set. We show that eigenvector bias can have a substantial impact on variance-minimizing optimizatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Goldberg, Lisa R., Kercheval, Alec N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926287/
https://www.ncbi.nlm.nih.gov/pubmed/36603029
http://dx.doi.org/10.1073/pnas.2207046120