Cargando…
PBP Target Profiling by β-Lactam and β-Lactamase Inhibitors in Intact Pseudomonas aeruginosa: Effects of the Intrinsic and Acquired Resistance Determinants on the Periplasmic Drug Availability
The lack of effective treatment options against Pseudomonas aeruginosa is one of the main contributors to the silent pandemic. Many antibiotics are ineffective against resistant isolates due to poor target site penetration, efflux, or β-lactamase hydrolysis. Critical insights to design optimized ant...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927461/ https://www.ncbi.nlm.nih.gov/pubmed/36475840 http://dx.doi.org/10.1128/spectrum.03038-22 |
_version_ | 1784888479872712704 |
---|---|
author | Montaner, Maria Lopez-Argüello, Silvia Oliver, Antonio Moya, Bartolome |
author_facet | Montaner, Maria Lopez-Argüello, Silvia Oliver, Antonio Moya, Bartolome |
author_sort | Montaner, Maria |
collection | PubMed |
description | The lack of effective treatment options against Pseudomonas aeruginosa is one of the main contributors to the silent pandemic. Many antibiotics are ineffective against resistant isolates due to poor target site penetration, efflux, or β-lactamase hydrolysis. Critical insights to design optimized antimicrobial therapies and support translational drug development are needed. In the present work, we analyzed the periplasmic drug uptake and binding to PBPs of 11 structurally different β-lactams and 4 β-lactamase inhibitors (BLIs) in P. aeruginosa PAO1. The contribution of the most prevalent β-lactam resistance mechanisms to MIC and periplasmic target attainment was also assessed. Bacterial cultures (6.5 log(10) CFU/mL) were exposed to 1/2× PAO1 MIC of each antibiotic for 30 min. Unbound PBPs were labeled with Bocillin FL and analyzed using a FluorImager. Imipenem extensively inactivated all targets. Cephalosporins preferentially targeted PBP1a and PBP3. Aztreonam and amdinocillin bound exclusively to PBP3 and to PBP2 and PBP4, respectively. Penicillins bound preferentially to PBP1a, PBP1b, and PBP3. BLIs displayed poor PBP occupancy. Inactivation of oprD elicited a notable reduction of imipenem target attainment, and it was to a lesser extent in the other carbapenems. Improved PBP occupancy was observed for the main targets of the widely used antipseudomonal penicillins, cephalosporins, meropenem, aztreonam, and amdinocillin upon oprM inactivation, in line with MIC changes. AmpC constitutive hyperexpression caused a substantial PBP occupancy reduction for the penicillins, cephalosporins, and aztreonam. Data obtained in this work will support the rational design of optimized β-lactam-based combination therapies against resistant P. aeruginosa infections. IMPORTANCE The growing problem of antibiotic resistance in Gram-negative pathogens is linked to three key aspects, (i) the progressive worldwide epidemic spread of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) Gram-negative strains, (ii) a decrease in the number of effective new antibiotics against multiresistant isolates, and (iii) the lack of mechanistically informed combinations and dosing strategies. Our combined efforts should focus not only on the development of new antimicrobial agents but the adequate administration of these in combination with other agents currently available in the clinic. Our work determined the effectiveness of these compounds in the clinically relevant bacteria Pseudomonas aeruginosa at the molecular level, assessing the net influx rate and their ability to access their targets and achieve bacterial killing without generating resistance. The data generated in this work will be helpful for translational drug development. |
format | Online Article Text |
id | pubmed-9927461 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-99274612023-02-15 PBP Target Profiling by β-Lactam and β-Lactamase Inhibitors in Intact Pseudomonas aeruginosa: Effects of the Intrinsic and Acquired Resistance Determinants on the Periplasmic Drug Availability Montaner, Maria Lopez-Argüello, Silvia Oliver, Antonio Moya, Bartolome Microbiol Spectr Research Article The lack of effective treatment options against Pseudomonas aeruginosa is one of the main contributors to the silent pandemic. Many antibiotics are ineffective against resistant isolates due to poor target site penetration, efflux, or β-lactamase hydrolysis. Critical insights to design optimized antimicrobial therapies and support translational drug development are needed. In the present work, we analyzed the periplasmic drug uptake and binding to PBPs of 11 structurally different β-lactams and 4 β-lactamase inhibitors (BLIs) in P. aeruginosa PAO1. The contribution of the most prevalent β-lactam resistance mechanisms to MIC and periplasmic target attainment was also assessed. Bacterial cultures (6.5 log(10) CFU/mL) were exposed to 1/2× PAO1 MIC of each antibiotic for 30 min. Unbound PBPs were labeled with Bocillin FL and analyzed using a FluorImager. Imipenem extensively inactivated all targets. Cephalosporins preferentially targeted PBP1a and PBP3. Aztreonam and amdinocillin bound exclusively to PBP3 and to PBP2 and PBP4, respectively. Penicillins bound preferentially to PBP1a, PBP1b, and PBP3. BLIs displayed poor PBP occupancy. Inactivation of oprD elicited a notable reduction of imipenem target attainment, and it was to a lesser extent in the other carbapenems. Improved PBP occupancy was observed for the main targets of the widely used antipseudomonal penicillins, cephalosporins, meropenem, aztreonam, and amdinocillin upon oprM inactivation, in line with MIC changes. AmpC constitutive hyperexpression caused a substantial PBP occupancy reduction for the penicillins, cephalosporins, and aztreonam. Data obtained in this work will support the rational design of optimized β-lactam-based combination therapies against resistant P. aeruginosa infections. IMPORTANCE The growing problem of antibiotic resistance in Gram-negative pathogens is linked to three key aspects, (i) the progressive worldwide epidemic spread of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) Gram-negative strains, (ii) a decrease in the number of effective new antibiotics against multiresistant isolates, and (iii) the lack of mechanistically informed combinations and dosing strategies. Our combined efforts should focus not only on the development of new antimicrobial agents but the adequate administration of these in combination with other agents currently available in the clinic. Our work determined the effectiveness of these compounds in the clinically relevant bacteria Pseudomonas aeruginosa at the molecular level, assessing the net influx rate and their ability to access their targets and achieve bacterial killing without generating resistance. The data generated in this work will be helpful for translational drug development. American Society for Microbiology 2022-12-08 /pmc/articles/PMC9927461/ /pubmed/36475840 http://dx.doi.org/10.1128/spectrum.03038-22 Text en Copyright © 2022 Montaner et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Montaner, Maria Lopez-Argüello, Silvia Oliver, Antonio Moya, Bartolome PBP Target Profiling by β-Lactam and β-Lactamase Inhibitors in Intact Pseudomonas aeruginosa: Effects of the Intrinsic and Acquired Resistance Determinants on the Periplasmic Drug Availability |
title | PBP Target Profiling by β-Lactam and β-Lactamase Inhibitors in Intact Pseudomonas aeruginosa: Effects of the Intrinsic and Acquired Resistance Determinants on the Periplasmic Drug Availability |
title_full | PBP Target Profiling by β-Lactam and β-Lactamase Inhibitors in Intact Pseudomonas aeruginosa: Effects of the Intrinsic and Acquired Resistance Determinants on the Periplasmic Drug Availability |
title_fullStr | PBP Target Profiling by β-Lactam and β-Lactamase Inhibitors in Intact Pseudomonas aeruginosa: Effects of the Intrinsic and Acquired Resistance Determinants on the Periplasmic Drug Availability |
title_full_unstemmed | PBP Target Profiling by β-Lactam and β-Lactamase Inhibitors in Intact Pseudomonas aeruginosa: Effects of the Intrinsic and Acquired Resistance Determinants on the Periplasmic Drug Availability |
title_short | PBP Target Profiling by β-Lactam and β-Lactamase Inhibitors in Intact Pseudomonas aeruginosa: Effects of the Intrinsic and Acquired Resistance Determinants on the Periplasmic Drug Availability |
title_sort | pbp target profiling by β-lactam and β-lactamase inhibitors in intact pseudomonas aeruginosa: effects of the intrinsic and acquired resistance determinants on the periplasmic drug availability |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927461/ https://www.ncbi.nlm.nih.gov/pubmed/36475840 http://dx.doi.org/10.1128/spectrum.03038-22 |
work_keys_str_mv | AT montanermaria pbptargetprofilingbyblactamandblactamaseinhibitorsinintactpseudomonasaeruginosaeffectsoftheintrinsicandacquiredresistancedeterminantsontheperiplasmicdrugavailability AT lopezarguellosilvia pbptargetprofilingbyblactamandblactamaseinhibitorsinintactpseudomonasaeruginosaeffectsoftheintrinsicandacquiredresistancedeterminantsontheperiplasmicdrugavailability AT oliverantonio pbptargetprofilingbyblactamandblactamaseinhibitorsinintactpseudomonasaeruginosaeffectsoftheintrinsicandacquiredresistancedeterminantsontheperiplasmicdrugavailability AT moyabartolome pbptargetprofilingbyblactamandblactamaseinhibitorsinintactpseudomonasaeruginosaeffectsoftheintrinsicandacquiredresistancedeterminantsontheperiplasmicdrugavailability |