Cargando…
The major role of sarA in limiting Staphylococcus aureus extracellular protease production in vitro is correlated with decreased virulence in diverse clinical isolates in osteomyelitis
We previously demonstrated that MgrA, SarA, SarR, SarS, SarZ, and Rot bind at least three of the four promoters associated with genes encoding primary extracellular proteases in Staphylococcus aureus (Aur, ScpA, SspA/SspB, SplA-F). We also showed that mutation of sarA results in a greater increase i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928472/ https://www.ncbi.nlm.nih.gov/pubmed/36748843 http://dx.doi.org/10.1080/21505594.2023.2175496 |
_version_ | 1784888658083446784 |
---|---|
author | Campbell, Mara J. Beenken, Karen E. Ramirez, Aura M. Smeltzer, Mark S. |
author_facet | Campbell, Mara J. Beenken, Karen E. Ramirez, Aura M. Smeltzer, Mark S. |
author_sort | Campbell, Mara J. |
collection | PubMed |
description | We previously demonstrated that MgrA, SarA, SarR, SarS, SarZ, and Rot bind at least three of the four promoters associated with genes encoding primary extracellular proteases in Staphylococcus aureus (Aur, ScpA, SspA/SspB, SplA-F). We also showed that mutation of sarA results in a greater increase in protease production, and decrease in biofilm formation, than mutation of the loci encoding any of these other proteins. However, these conclusions were based on in vitro studies. Thus, the goal of the experiments reported here was to determine the relative impact of the regulatory loci encoding these proteins in vivo. To this end, we compared the virulence of mgrA, sarA, sarR, sarS, sarZ, and rot mutants in a murine osteomyelitis model. Mutants were generated in the methicillin-resistant USA300 strain LAC and the methicillin-sensitive USA200 strain UAMS-1, which was isolated directly from the bone of an osteomyelitis patient during surgical debridement. Mutation of mgrA and rot limited virulence to a statistically significant extent in UAMS-1, but not in LAC, while the sarA mutant exhibited reduced virulence in both strains. The reduced virulence of the sarA mutant was correlated with reduced cytotoxicity for osteoblasts and osteoclasts, reduced biofilm formation, and reduced sensitivity to the antimicrobial peptide indolicidin, all of which were directly attributable to increased protease production in both LAC and UAMS-1. These results illustrate the importance of considering diverse clinical isolates when evaluating the impact of regulatory mutations on virulence and demonstrate the significance of SarA in limiting protease production in vivo in S. aureus. |
format | Online Article Text |
id | pubmed-9928472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-99284722023-02-15 The major role of sarA in limiting Staphylococcus aureus extracellular protease production in vitro is correlated with decreased virulence in diverse clinical isolates in osteomyelitis Campbell, Mara J. Beenken, Karen E. Ramirez, Aura M. Smeltzer, Mark S. Virulence Research Paper We previously demonstrated that MgrA, SarA, SarR, SarS, SarZ, and Rot bind at least three of the four promoters associated with genes encoding primary extracellular proteases in Staphylococcus aureus (Aur, ScpA, SspA/SspB, SplA-F). We also showed that mutation of sarA results in a greater increase in protease production, and decrease in biofilm formation, than mutation of the loci encoding any of these other proteins. However, these conclusions were based on in vitro studies. Thus, the goal of the experiments reported here was to determine the relative impact of the regulatory loci encoding these proteins in vivo. To this end, we compared the virulence of mgrA, sarA, sarR, sarS, sarZ, and rot mutants in a murine osteomyelitis model. Mutants were generated in the methicillin-resistant USA300 strain LAC and the methicillin-sensitive USA200 strain UAMS-1, which was isolated directly from the bone of an osteomyelitis patient during surgical debridement. Mutation of mgrA and rot limited virulence to a statistically significant extent in UAMS-1, but not in LAC, while the sarA mutant exhibited reduced virulence in both strains. The reduced virulence of the sarA mutant was correlated with reduced cytotoxicity for osteoblasts and osteoclasts, reduced biofilm formation, and reduced sensitivity to the antimicrobial peptide indolicidin, all of which were directly attributable to increased protease production in both LAC and UAMS-1. These results illustrate the importance of considering diverse clinical isolates when evaluating the impact of regulatory mutations on virulence and demonstrate the significance of SarA in limiting protease production in vivo in S. aureus. Taylor & Francis 2023-02-13 /pmc/articles/PMC9928472/ /pubmed/36748843 http://dx.doi.org/10.1080/21505594.2023.2175496 Text en © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Campbell, Mara J. Beenken, Karen E. Ramirez, Aura M. Smeltzer, Mark S. The major role of sarA in limiting Staphylococcus aureus extracellular protease production in vitro is correlated with decreased virulence in diverse clinical isolates in osteomyelitis |
title | The major role of sarA in limiting Staphylococcus aureus extracellular protease production in vitro is correlated with decreased virulence in diverse clinical isolates in osteomyelitis |
title_full | The major role of sarA in limiting Staphylococcus aureus extracellular protease production in vitro is correlated with decreased virulence in diverse clinical isolates in osteomyelitis |
title_fullStr | The major role of sarA in limiting Staphylococcus aureus extracellular protease production in vitro is correlated with decreased virulence in diverse clinical isolates in osteomyelitis |
title_full_unstemmed | The major role of sarA in limiting Staphylococcus aureus extracellular protease production in vitro is correlated with decreased virulence in diverse clinical isolates in osteomyelitis |
title_short | The major role of sarA in limiting Staphylococcus aureus extracellular protease production in vitro is correlated with decreased virulence in diverse clinical isolates in osteomyelitis |
title_sort | major role of sara in limiting staphylococcus aureus extracellular protease production in vitro is correlated with decreased virulence in diverse clinical isolates in osteomyelitis |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928472/ https://www.ncbi.nlm.nih.gov/pubmed/36748843 http://dx.doi.org/10.1080/21505594.2023.2175496 |
work_keys_str_mv | AT campbellmaraj themajorroleofsarainlimitingstaphylococcusaureusextracellularproteaseproductioninvitroiscorrelatedwithdecreasedvirulenceindiverseclinicalisolatesinosteomyelitis AT beenkenkarene themajorroleofsarainlimitingstaphylococcusaureusextracellularproteaseproductioninvitroiscorrelatedwithdecreasedvirulenceindiverseclinicalisolatesinosteomyelitis AT ramirezauram themajorroleofsarainlimitingstaphylococcusaureusextracellularproteaseproductioninvitroiscorrelatedwithdecreasedvirulenceindiverseclinicalisolatesinosteomyelitis AT smeltzermarks themajorroleofsarainlimitingstaphylococcusaureusextracellularproteaseproductioninvitroiscorrelatedwithdecreasedvirulenceindiverseclinicalisolatesinosteomyelitis AT campbellmaraj majorroleofsarainlimitingstaphylococcusaureusextracellularproteaseproductioninvitroiscorrelatedwithdecreasedvirulenceindiverseclinicalisolatesinosteomyelitis AT beenkenkarene majorroleofsarainlimitingstaphylococcusaureusextracellularproteaseproductioninvitroiscorrelatedwithdecreasedvirulenceindiverseclinicalisolatesinosteomyelitis AT ramirezauram majorroleofsarainlimitingstaphylococcusaureusextracellularproteaseproductioninvitroiscorrelatedwithdecreasedvirulenceindiverseclinicalisolatesinosteomyelitis AT smeltzermarks majorroleofsarainlimitingstaphylococcusaureusextracellularproteaseproductioninvitroiscorrelatedwithdecreasedvirulenceindiverseclinicalisolatesinosteomyelitis |